• Title/Summary/Keyword: Chemical process industry

Search Result 681, Processing Time 0.033 seconds

Trends for the management of hazardous substances derived from fatty acids (지방산 유래 유해물질 관리 동향)

  • Shin, Jae-Wook;Jang, Gill-Woong
    • Food Science and Industry
    • /
    • v.55 no.1
    • /
    • pp.33-44
    • /
    • 2022
  • More than 500 different compounds have been identified in the cooking process of frying oil as a result of chemical reactions such as oxidation, polymerization, hydrolysis and pyrolysis, 3-MCPDe(3-Monochloropropane -1,2-diol ester) and GE(glycidyl ester) are also included in these compounds. When MCPDe and GE derivatives are absorbed into the body, they are converted into free forms by lipase enzymes, which turn into 3-MCPD and glycidol(2,3-epoxy-1-propanol), respectively. These exhibit genotoxic and carcinogenic effects. As the toxicity of 3-MCPDe and GE is known worldwide, the health risk is being researched. However, regulations have not been established in countries other than the European Union(EU). Several studies for the analysis of 3-MCPDe and GE are being conducted, and direct methods and indirect methods are applied. As a result of analyzing 3-MCPDe and GE contained in commercially available foods by various analysis methods, the content of 3-MCPDe in baby food/infant formula was ND~600 ㎍/mL and GE was ND~750 ㎍/mL. and purified vegetable oils and fats showed <250-8,430 ㎍/mL and 1,880-9,530 ㎍/mL. Thus, 3-MCPDe and GE were detected in various food types, several studies for the reduction of 3-MCPDe and GE are being conducted around the world.

Recent Studies on Area Selective Atomic Layer Deposition of Elemental Metals (단일 원소 금속의 영역 선택적 원자층 증착법 연구 동향)

  • Min Gyoo Cho;Jae Hee Go;Byung Joon Choi
    • Journal of Powder Materials
    • /
    • v.30 no.2
    • /
    • pp.156-168
    • /
    • 2023
  • The semiconductor industry faces physical limitations due to its top-down manufacturing processes. High cost of EUV equipment, time loss during tens or hundreds of photolithography steps, overlay, etch process errors, and contamination issues owing to photolithography still exist and may become more serious with the miniaturization of semiconductor devices. Therefore, a bottom-up approach is required to overcome these issues. The key technology that enables bottom-up semiconductor manufacturing is area-selective atomic layer deposition (ASALD). Here, various ASALD processes for elemental metals, such as Co, Cu, Ir, Ni, Pt, and Ru, are reviewed. Surface treatments using chemical species, such as self-assembled monolayers and small-molecule inhibitors, to control the hydrophilicity of the surface have been introduced. Finally, we discuss the future applications of metal ASALD processes.

Repair of tendon injury in Taekwondo by nanobiotics

  • Dilong An;Shun Jiang;Tongtong Cai;Wei Tian
    • Advances in nano research
    • /
    • v.14 no.6
    • /
    • pp.591-602
    • /
    • 2023
  • In the present study, capability of nanobiotics in repairing tendon injuries commonly occur in Taekwondo sport is investigated and some approaches are proposed. In this regard, a brief review on the types and application of nanobiotics is presented. Their capabilities and limitation are discussed. Next, different type of tendon injuries in Taekwondo athletes are discussed along with their treatment approaches. Based on the presented data, a nano-scale feasible robot model carrying nanobiotics is proposed for repairing tendons. Finite element simulations is also conducted to show the effectiveness of the repairing process using nanorobots equipped with nanobiotics. This repairing procedure is a combination of mechanical and chemical treatments. The results indicated that using nanobiotics on nanorobots arms in the repair of tendon injuries has many benefits. First, drug delivery is directly injected to the target section. Second, Due to the nanorobots small sizes more acute treatment is possible. Finally, since the control of the nanorobots are assisted with computers, the possibility of human error reduces significantly. The proposed method of the present study could be utilized by other scientists and technological industry in developing final nanorobots with nanobiotics carrying capacity.

Research Trends in Bipolar Membrane for Water Dissociation Catalysts and Energy Technology Applications (바이폴라막의 물 분해 촉매 및 에너지 기술 응용의 연구 동향)

  • Do-Hyeong Kim;Sang Yong Nam
    • Membrane Journal
    • /
    • v.34 no.1
    • /
    • pp.10-19
    • /
    • 2024
  • The bipolar membrane is an ion exchange membrane consisting of a cation exchange layer, an anion exchange layer, and an interface layer, and is a membrane that generates protons and hydroxide ions based on water dissociation characteristics. Using these properties, research is being conducted in various application fields such as the chemical industry, food processing, environmental protection, and energy conversion and storage. This paper investigated the concept of bipolar membrane, water dissociation mechanism, and water dissociation catalyst to provide a comprehensive understanding of bipolar membrane technology, were investigated. Lastly, we also investigated the bipolar membrane process that has been recently applied to energy technology.

Evaluation of Economic-Environmental Impact of Heat Exchanger Network in Naphtha Cracking Center (납사분해 공정 내 열 교환 네트워크 경제적-환경영향 평가)

  • Hyojin Jung;Subin Jung;Yuchan Ahn
    • Korean Chemical Engineering Research
    • /
    • v.61 no.3
    • /
    • pp.378-387
    • /
    • 2023
  • Petrochemical is an energy consuming industry that consumes about 30% of total industrial energy consumption and is a representative carbon dioxide (CO2) emission source. Among them, the Naphtha Cracking Center (NCC), which produces ethylene, propylene, propane and mixed C4, consumes large amounts of energy and emits significant amounts of CO2. For this reason, an integrated techno economic- environmental impact assessment aimed at reducing energy consumption and environmental impact factors is necessary to ensure efficiency in terms of economics and environment. This study aims to analyze the efficiency of the heat exchanger network used in the existing NCC base on the pinch analysis and select an improvement plan that can reduced energy consumption. In order to reduces the utility consumption in the process, an optimal heat exchanger network considering the high-temperature and low-temperature stream was derived, and the economic evaluation was conducted by considering the trade-off between the reduction in utility consumption and the increase in heat exchanger installation cost. In addition, an environmental impact assessment was conducted on the reduced CO2 emission in consideration of the environmental aspect, and the economic environmental impact assessment used the payback period to recover the invested funds to come up with an energy saving plan that can be applied based on the actual process. As a result of considering the economic-environmental impact assessment, when the environmental impact assessment was not considered, it was 4.29 months, 3.21 months, and 3.39 months for each case, and when considering the environmental impact assessment, it was 4.24 months, 3.17 months, and 3.35 months for each case. These results appeared equally both when the environmental impact assessment was not include and when it was include. In addition, a sensitivity analysis was conducted for each case to determine how important factors affect the payback period. As a result of the sensitivity analysis, the cost of the heat exchanger was identified as a major factor influencing the overall cost.

Studies on the Properties of Mechanical Pulp from Italian Poplar Wood(Populus euramericana I-476) by the Age of Tree (수령(樹齡)에 의한 포플러펄프의 성질(性質)에 관(關)한 연구(硏究))

  • Shin, Dong-So;Jo, Byoung-Muk;Ahn, Won-Yong;Moon, Chang-Guk;Shim, Chong-Supp
    • Journal of the Korean Wood Science and Technology
    • /
    • v.10 no.3
    • /
    • pp.168-179
    • /
    • 1982
  • The first step to utilize the growing resources of Italian poplar (Populus euramericana I-476) for pulp-Woods, its characteristics and adaptabilities to the pulp industry must be investigated completely. The plantation methods are important for its fast growing in stock, and no less important is the cutting age for its utilization as pulpwood. In this paper, the stone groundwood pulping, refiner groundwood pulping and chemi-groundwood pulping characteristics by the age of tree, along with their physical and chemical characterstics were tested, and relationships between the age groups were analyzed to find out the optimum felling age. The results obtained are as follows: 1. The coefficient of pliability was a little higher in the case of younger trees. 2. The water retention value of each pulp was directly proportional to its physical strength, but this tendency was not detected between the age groups of sample woods. 3. Generally, the physical strength of younger wood pulp was lower regardless of the pulping process. But in the case of pretreatment with NaOH, Asphund and CGP pulp from 5 year old sample wood were stronger in physical strengths than those of GP and Asplund pulp with no pretreatment from 10 years old sample wood. 4. The tear factor of Asplund pulp with alkali pretreatment was higher than that of CGP pulp but the breaking length and the burst factor was similar in all processes. Considering the pulp yield and its brightness, CGP process seems to be advantageous. 5. The dissimilarity of physical strength between 7 and 10 years old wood pulp was not very large in all pulping processes but the physical strength of 5 year old wood pulp was very weak. In the of groundwood pulping from Italian poplar woods, 5 year old wood pulp should be mixed with other long fiber pulp for making a good paper.

  • PDF

Bicomponent Finishing of Cotton Fabrics(I) -Loess and Chitosan- (면의 복합가공(I) -황토와 키토산-)

  • Bae, Ki-Hyun;Kwon, Jung-Sook;Lee, Shin-Hee
    • Fashion & Textile Research Journal
    • /
    • v.10 no.4
    • /
    • pp.552-559
    • /
    • 2008
  • Recent days, various inner wears, sheets and interior goods are manufactured using materials dyed with loess emphasizing its improved blood circulation, metabolism, anti-bacterial, deodorizing properties, and far-infrared ray emissions. The purpose of this study is to investigate the effect of chitosan treatment on the dyeing of cotton fabric using loess as colorants. Particle size of loess, the morphology and dyeability(K/S) of chitosan crosslinked cotton fabrics, and washing durability of loess dyed cotton fabric were investigated. In this study, cotton fabrics were treated with a crosslinking agent, epichlorohydrin, in the presence of chitosan to improve the dyeing properties of cotton fabrics with natural dye by the chemical linking of chitosan to the cellulose structure. This process was applied by means of the conventional mercerizing process. The results obtained were as follows; Mean average diameter of loess was $1.13{\mu}m$. According to various conditions, the optimum dyeing conditions for cotton fabrics pretreated by 1% chitosan treatment was where 10%(owb) of loess was applied at $90^{\circ}C$ for 120minutes, while for cotton fabrics without chitosan treatment was where 15%(owb) of loess was applied at $90^{\circ}C$ for 150minutes. Overall, K/S value of loess dyed cotton fabric pretreated with 1% chitosan was higher than that of cotton fabrics without chitosan treatment. The Color fastness, washing fastness and light fastness of loess were excellent as 4-5grade.

ASSESSMENT OF SUBSTRATE REMOVAL CHARACTERISTICS ACCORDING TO ACCLIMATION PERIODS BY OUR AND NUR TESTS

  • Jung, Jung-Eun;Lee, Sung-Hak;Im, Jeong-Hoon;Poo, Kyoung-Min;Kim, Jong-Rock;Kim, Chang-Won
    • Environmental Engineering Research
    • /
    • v.11 no.3
    • /
    • pp.156-163
    • /
    • 2006
  • In this study, substrate removal characteristics were analyzed to reduce the cost of external carbon dosage at Sudokwon Landfill Site Management Corporation in Korea by utilizing oxygen uptake rate (OUR) and nitrate uptake rate (NUR) tests. To estimate and evaluate the substrate removal characteristics obtained by the batch tests, the lab-scale MLE process was operated. By-products of J Co. (sugar manufactory) and S Co. (fine chemical industry) were selected as the concerned carbon sources through a comparison of carbon and nitrogen contents. MeOH was tested as a control experiment. Until the steady state, the fraction of $RBDCOD_{OUR}$ concentration to COD concentration of J Co., S Co. by-products and MeOH increased and reached levels of 98%, 82%, and 100%, respectively. During the 20th operating day, the fraction of $RBDCOD_{NUR}$ concentration to COD concentration was 95%, 81%, and 83%, respectively. These fractions of $RBDCOD_{NUR}$ concentration to $RBDCOD_{OUR}$ concentration increased according to acclimation periods and reached levels of 99%, 97%, and 81%, respectively, on the 20th day. The results obtained from the lab-scale MLE process operation using the concerned carbon sources as external carbon were similar to that observed by OUR and NUR tests.

Slurry Characteristics by Surfactant Condition at Copper CMP (구리 CMP 공정시 계면활성제 첨가 조건에 의한 슬러리 특성)

  • Kim, In-Pyo;Kim, Nam-Hoon;Lim, Jong-Heun;Kim, Sang-Yong;Kim, Tae-Hyoung;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.05c
    • /
    • pp.166-169
    • /
    • 2003
  • In this study, we evaluated the characteristics by the addition of 3 different kinds of nonionic surfactant to improve the dispersion stability of slurries. Slurry stability is an issue in any industry in which settling of particles can result in poor performance. So we observed the variation of particle size and settling rate when the concentration and addition time of surfactant are changed. When the surfactant is added after milling process, the particle size and pH became low. It is supposed that the particle agglomeration was disturbed by adsorption of surfactant on alumina abrasive. The settling rate was relatively stable when nonionic surfactant is added about 0.1~1.0 wt%. When molecular weight(MW) is too small like Brij 35, it was appeared low effect on dispersion stability. Because it can't prevent coagulation and subsequent settling with too small MW. The proper quality of MW for slurry stability was presented about 500,000. Consequently, the addition of nonionic surfactant to alumina slurry has been shown to have very good effect on slurry stabilization. If we apply this results to copper CMP process, it is thought that we will be able to obtain better yield.

  • PDF

Development of Volatile Organic Compound Pretreatment Device for Removing Exhaust Gas from Display Manufacturing Process (Display 제조공정 배출가스 처리를 위한 휘발성 유기화합물 전처리 장치 개발)

  • Moon, Gi-Hak;Kim, Jae-Yong
    • Applied Chemistry for Engineering
    • /
    • v.30 no.5
    • /
    • pp.523-529
    • /
    • 2019
  • In this study, we investigated the pretreatment technologies of volatile organic compounds (VOCs) which is a problem as the semiconductor and display industry develops recently. The conventional concentrator used in the direct combustion system, is easily contaminated by the exhaust gas in the manufacturing process of the display, resulting in the low treatment efficiency of generated VOCs. Physical/Chemical analyses of the exhaust gas showed high boiling point and viscosity in addition to a large amount of molecular weight alcohols and oil components. In this study, we tried to treat degrading materials by using the heat exchanger in a pretreatment facility and some materials degrading the concentrator were condensed more than 90%. In addition, it was also confirmed that an auxiliary device of the grease filter could remove the redispersion polymer oil from the heat exchanger.