• Title/Summary/Keyword: Chemical process

Search Result 10,405, Processing Time 0.042 seconds

Effect of Chemical Mechanical Cleaning(CMC) on Particle Removal in Post-Cu CMP Cleaning (구리 CMP 후 연마입자 제거에 화학 기계적 세정의 효과)

  • Kim, Young-Min;Cho, Han-Chul;Jeong, Hae-Do
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.10
    • /
    • pp.1023-1028
    • /
    • 2009
  • Cleaning is required following CMP (chemical mechanical planarization) to remove particles. The minimization of particle residue is required with each successive technology generation, and the cleaning of wafers becomes more complicated. In copper damascene process for interconnection structure, it utilizes 2-step CMP consists of Cu and barrier CMP. Such a 2-steps CMP process leaves a lot of abrasive particles on the wafer surface, cleaning is required to remove abrasive particles. In this study, the chemical mechanical cleaning(CMC) is performed various conditions as a cleaning process. The CMC process combined mechanical cleaning by friction between a wafer and a pad and chemical cleaning by CMC solution consists of tetramethyl ammonium hydroxide (TMAH) / benzotriazole (BTA). This paper studies the removal of abrasive on the Cu wafer and the cleaning efficiency of CMC process.

Hyper Functionalized Nanoparticle Technology and their Applications

  • Lee, Sun-Jong;Jung, Yeon-Jae;Lee, Jung-Min;Lee, Jun-Young;Kim, Jung-Hyun
    • Proceedings of the Polymer Society of Korea Conference
    • /
    • 2006.10a
    • /
    • pp.83-84
    • /
    • 2006
  • In aqueous phase, we directly prepared conducting and photoluminescent nano-structured particles by oxidation polymerization. Thiophene(PT) was initiated by $FeCl_{3}/H_{2}O_{2}$ (catalyst/oxidant) combination system. And, polydispersed core-shell poly(styrene/thiophene) and polyaniline(PANI)-coated multi core-shell polystyrene latex particles were successfully prepared by oxidative and radical polymerization. The resulting latex particles have fine improved luminescence and conductive efficiency and dispersion state due to the PT and PANI shell. Hyper functionalized nanoparticle would be expected to increase the processibility in various electrical and electro-optical fields.

  • PDF

Permeability of pH-sensitive membranes grafted by Fenton-type reaction: An experimental and modeling study

  • Gac, Jakub M.;Bojarska, Marta;Stepniewska, Izabela;Piatkiewicz, Wojciech;Gradon, Leon
    • Membrane and Water Treatment
    • /
    • v.6 no.5
    • /
    • pp.411-422
    • /
    • 2015
  • Membrane modification by different concentrations of acrylic acid has been described. Grafting of acrylic acid to the surface of a polypropylene membrane was obtained by a Fenton-type reaction. Membrane permeability seemed to have been dependent on the value of pH in the solution. To explain tendency, a simple theoretical model was developed. The model incorporates explicitly statistical conformations of a polyacid chain grafted onto the pore surface. The charged capillary model with a varying diameter for porous membranes was then used to evaluate the permeability of the membrane. It has been shown both theoretically and experimentally that the permeability of a grafted membrane depends on the pH of the solution.

A Review of Chlorine Evolution Mechanism on Dimensionally Stable Anode (DSA®) (DSA 전극에서 염소 발생 메커니즘)

  • Kim, Jiye;Kim, Choonsoo;Kim, Seonghwan;Yoon, Jeyong
    • Korean Chemical Engineering Research
    • /
    • v.53 no.5
    • /
    • pp.531-539
    • /
    • 2015
  • Chlor-alkali industry is one of the largest electrochemical processes which annually producing 70 million tons of sodium hydroxide and chlorine from sodium chloride solution. $DSA^{(R)}$ (Dimensionally Stable Anodes) electrodes such as $RuO_2$ and $IrO_2$, which is popular in chlor-alkali process, have been investigated to improve the chlorine generation efficiency. Although DSA electrode has been developed with various researches, understanding of the chlorine evolution mechanism is essential to the development of highly efficient DSA electrode. In this review paper, chlorine generation mechanisms are summarized and that of key factors are identified to systematically understand the chlorine generation mechanism. Rate determining step, effect of pH, reaction intermediate, and electrode crystal structure were intensively overviewed as key factors of the chlorine mechanism.

Chemical Mechanical Micro Machining(C3M) Process (화학 기계적 미세가공 기술)

  • 박준민;정해도;김성헌;정상철;이응숙
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.739-742
    • /
    • 2000
  • Micro machining technology has been studied to fabricate small size and high accuracy milli-structure products. To perfectly overcome the conventional mechanical machining methods, the chemical mechanical micro machining(C3M) process was developed. The mechanism of C3M process is that chemical solution etches the material and results in the generation of the chemical reacted layer, and the mechanical micro tool subsequently removes the layer. From the fundamental experiments, the C3M process has been founded to have the advantages of lower machining resistance, tool wear, and higher surface quality and form accuracy than conventional methods. This study focuses on the micro grooving of both the metallic material(SKDII, A1) and hard brittle silicon oxide.

  • PDF

Development of Chemical Decontamination Process of Stainless Steel for Reactor Coolant Pump(II) (원자로 냉각재 펌프용 스테인리스강에 대한 화학적 제염 공정 개발(II))

  • Kim, Seong-Jong;Kim, Jeong-Il;Kim, Ki-Joon
    • Journal of Surface Science and Engineering
    • /
    • v.40 no.6
    • /
    • pp.271-278
    • /
    • 2007
  • In this study, applicable possibility in chemical decontamination for reactor coolant pump(RCP) was investigated for the various stainless steels. The stainless steel(STS) 304 showed the best electrochemical properties for corrosion current density and the lowest weight loss ratio in chemical decontamination process model 3-3 than other materials. The weightloss quantity in chemical decontamination process model 3-3 presents the lowest value compare to the other chemical decontamination process model 1, 2, 3-1 and 3-2. In the case of SEM observation, the pitting corrosion was generated in both STS 415 and STS 431 with the increasing numbers of cycle. The intergranular corrosion in STS 431 was sporadically observed. The sizes of their pitting corrosion were also increased with increasing cycle numbers.

A Deep Investigation of the Thermal Decomposition Process of Supported Silver Catalysts

  • Jiang, Jun;Xu, Tianhao;Li, Yaping;Lei, Xiaodong;Zhang, Hui;Evans, D.G.;Sun, Xiaoming;Duan, Xue
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.6
    • /
    • pp.1832-1836
    • /
    • 2014
  • A deep understanding of the metallic silver catalysts formation process on oxide support and the formation mechanism is of great scientific and practical meaning for exploring better catalyst preparing procedures. Herein the thermal decomposition process of supported silver catalyst with silver oxalate as the silver precursor in the presence of ethylenediamine and ethanolamine is carefully investigated by employing a variety of characterization techniques including thermal analysis, in situ diffuse reflectance infrared Fourier transform spectroscopy, scanning electron microscopy, and X-ray diffraction. The formation mechanism of supported silver particles was revealed. Results showed that formation of metallic silver begins at about $100^{\circ}C$ and activation process is essentially complete below $145^{\circ}C$. Formation of silver was accompanied by decomposition of oxalate group and removal of organic amines. Catalytic performance tests using the epoxidation of ethylene as a probe reaction showed that rapid activation (for 5 minutes) at a relatively low temperature ($170^{\circ}C$) afforded materials with optimum catalytic performance, since higher activation temperatures and/or longer activation times resulted in sintering of the silver particles.

Performance Analysis of Polygeneration Process (폴리제너레이션 성능 모사 연구)

  • LEE, SIHWANG;DAT, NGUYEN VO;LEE, GUNHEE;JUNG, MINYOUNG;JEON, RAKYOUNG;OH, MIN
    • Journal of Hydrogen and New Energy
    • /
    • v.28 no.4
    • /
    • pp.352-360
    • /
    • 2017
  • Polygeneration process is widely used to pursuit high efficiency by sharing electricity, utility, refrigeration and the utilization of product chemicals. In this paper, performance analysis of the 450 MW Class polygeneration process was conducted with various syngas generated from coal and biomass gasifier. WGSR and PSA process were employed for hydrogen production and separation. Process modeling and dynamic simulation was carried out, and the results were compared with NETL report. Net power of the polygeneration process was 439 MW considering power consumption. More than 90% of CO was converted at WGSR and the hydrogen purity of PSA was more than 99.99%.