• Title/Summary/Keyword: Chemical mechanical planarization

Search Result 231, Processing Time 0.023 seconds

Titration methods of $H_2O_2$ in Cu/TaN CMP (Cu/TaN CMP시 $H_2O_2$ 적정방법)

  • Yoo, Hae-Young;Kim, Nam-Hoon;Kim, Sang-Yong;Kim, Tae-Hyung;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.04b
    • /
    • pp.38-41
    • /
    • 2004
  • The oxidizer plays an important role in the metal chemical mechanical polishing(CMP) slurry. Currently, the oxidizer used in CMP slurry is nearly divided into several kinds such as $Fe(NO_3)_3$, $H_2O_2$, $KIO_3$, and $H_5IO_6$. It is generally known that oxidizer character of $H_2O_2$ is more effective than other oxidizers. In this work, we have been studied the characteristics for the $H_2O_2$ concentration of copper slurry, which can applicable in the recent semiconductor manufacturing process. Also, it plays an important role in the planarization of copper films using copper slurries during micro-electronic device fabrication. In this work, we confirmed that removal rate of Cu/TaN changed by $H_2O_2$ concentration on copper slurry. And we used $KMnO_4$ in the measurement method of $H_2O_2$. In analysis results, we confirmed that the difference of results is large. We thought that the difference was due to organic component existence. So in titration method of $H_2O_2$ concentration, we used $Na_2S_2O_3$ instead of $KMnO_4$ as solution. Consequently, using the titration method, we could calculate correct data reduced error. And $H_2O_2$ concentration has been adjusted to the target concentration of 0.1 wt%.

  • PDF

Effects of Consumable on STI-CMP Process (STI-CMP 공정에서 Consumable의 영향)

  • Kim, Sang-Yong;Park, Sung-Woo;Jeong, So-Young;Lee, Woo-Sun;Kim, Chang-Il;Chang, Eui-Goo;Seo, Yong-Jin
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2001.11b
    • /
    • pp.185-188
    • /
    • 2001
  • Chemical mechanical polishing(CMP) process is widely used for global planarization of inter-metal dielectric (IMD) layer and inter-layer dielectric (ILD) for deep sub-micron technology. However, as the IMD and ILD layer gets thinner, defects such as micro-scratch lead to severe circuit failure, which affect yield. In this paper, for the improvement of CMP process, deionized water (DIW) pressure, purified $N_2 \; (PN_2)$ gas, slurry filter and high spray bar were installed. Our experimental results show that DIW pressure and $PN_2$ gas factors were not related with removal rate, but edge hot-spot of patterned wafer had a serious relation. Also, the filter installation in CMP polisher could reduce defects after CMP process, it is shown that slurry filter plays an important role in determining consumable pad lifetime. The filter lifetime is dominated by the defects. However, the slurry filter is impossible to prevent defect-causing particles perfectly. Thus, we suggest that it is necessary to install the high spray bar of de-ionized water (DIW) with high pressure, to overcome the weak-point of slurry filter. Finally, we could expect the improvements of throughput, yield and stability in the ULSI fabrication process.

  • PDF

Effects of Various Facility Factors on CMP Process Defects (CMP 공정의 설비요소가 공정 결함에 미치는 영향)

  • Park, Seong-U;Jeong, So-Yeong;Park, Chang-Jun;Lee, Gyeong-Jin;Kim, Gi-Uk;Seo, Yong-Jin
    • The Transactions of the Korean Institute of Electrical Engineers C
    • /
    • v.51 no.5
    • /
    • pp.191-195
    • /
    • 2002
  • Chemical mechanical Polishing (CMP) process is widely used for the global planarization of inter-metal dielectric (IMD) layer and inter-layer dielectric (ILD) for deep sub-micron technology. However, as the IMD and ILD layer gets thinner, defects such as micro-scratch lead to severe circuit failure, which affect yield. In this paper, for the improvement of CMP process, deionized water (DIW) pressure, purified $N_2$ ($PN_2$) gas, point of use (POU) slurry filler and high spray bar (HSB) were installed. Our experimental results show that DW pressure and P$N_2$ gas factors were not related with removal rate, but edge hot-spot of patterned wafer had a serious relation. Also, the filter installation in CMP polisher could reduce defects after CMP process, it is shown that slurry filter plays an important role in determining consumable pad lifetime. The filter lifetime is dominated by the defects. However, the slurry filter is impossible to prevent defect-causing particles perfectly. Thus, we suggest that it is necessary to install the high spray bar of de-ionized water (DIW) with high pressure, to overcome the weak-point of slurry filter Finally, we could expect the improvements of throughput, yield and stability in the ULSI fabrication process.

Thermal, Tribological, and Removal Rate Characteristics of Pad Conditioning in Copper CMP

  • Lee, Hyo-Sang;DeNardis, Darren;Philipossian, Ara;Seike, Yoshiyuki;Takaoka, Mineo;Miyachi, Keiji;Furukawa, Shoichi;Terada, Akio;Zhuang, Yun;Borucki, Len
    • Transactions on Electrical and Electronic Materials
    • /
    • v.8 no.2
    • /
    • pp.67-72
    • /
    • 2007
  • High Pressure Micro Jet (HPMJ) pad conditioning system was investigated as an alternative to diamond disc conditioning in copper CMP. A series of comparative 50-wafer marathon runs were conducted at constant wafer pressure and sliding velocity using Rohm & Haas IC1000 and Asahi-Kasei EMD Corporation (UNIPAD) concentrically grooved pads under ex-situ diamond conditioning or HPMJ conditioning. SEM images indicated that fibrous surface was restored using UNIPAD pads under both diamond and HPMJ conditioning. With IC1000 pads, asperities on the surface were significantly collapsed. This was believed to be due to differences in pad wear rates for the two conditioning methods. COF and removal rate were stable from wafer to wafer using both diamond and HPMJ conditioning when UNIPAD pads were used. Also, HPMJ conditioning showed higher COF and removal rate when compared to diamond conditioning for UNIPAD. On the other hand, COF and removal rates for IC1000 pads decreased significantly under HPMJ conditioning. Regardless of pad conditioning method adopted and the type of pad used, linear correlation was observed between temperature and COF, and removal rate and COF.

Statistical Analysis on Process Variables in Linear Roll-CMP (선형 Roll-CMP에서 공정변수에 관한 통계적 분석)

  • Wang, Han;Lee, Hyunseop;Jeong, Haedo
    • Tribology and Lubricants
    • /
    • v.30 no.3
    • /
    • pp.139-145
    • /
    • 2014
  • Nowadays, most micro-patterns are manufactured during flow line production. However, a conventional rotary chemical mechanical polishing (CMP) system has a limited throughput for the fabrication of large and flexible electronics. To overcome this problem, we propose a novel linear roll-CMP system for the planarization of large-area electronics. In this paper, we present a statistical analysis on the linear roll-CMP process of copper-clad laminate (CCL) to determine the impacts of process parameters on the material removal rate (MRR) and its non-uniformity (NU). In the linear roll-CMP process, process parameters such as the slurry flow rate, roll speed, table feed rate, and down force affect the MRR and NU. To determine the polishing characteristics of roll-CMP, we use Taguchi's orthogonal array L16 (44) for the experimental design and F-values obtained by the analysis of variance (ANOVA). We investigate the signal-to-noise (S/N) ratio to identify the prominent control parameters. The "higher is better" for the MRR and "lower is better" for the NU were selected for obtaining optimum CMP performance characteristics. The experimental and statistical results indicate that the down force and roll speed mainly affect the MRR and the down force and table feed rate determine the NU in the linear roll-CMP process. However, over 186.3 N of down force deteriorates the NU because of the bending of substrate. Roll speed has little relationship to the NU and the table feed rate does not impact on the MRR. This study provides information on the design parameter of roll-CMP machine and process optimization.

The Surface Treatment Effect for Nanoimprint Lithography using Vapor Deposition of Silane Coupling Agent (나노임프린트 공정에서 실란커플링제 기상증착을 이용한 표면처리 효과)

  • Lee, Dong-Il;kim, Ki-Don;Jeong, Jun-Ho;Lee, Eung-Sug;Choi, Dae-Geun
    • Korean Chemical Engineering Research
    • /
    • v.45 no.2
    • /
    • pp.149-154
    • /
    • 2007
  • Nanoimprint lithography (NIL) is useful technique because of its low cost and high throughput capability for the fabrication of sub-micrometer patterns which has potential applications in micro-optics, magnetic memory devices, bio sensors, and photonic crystals. Usually, a chemical surface treatment of the stamp is needed to ensure a clean release after imprinting and to protect the expensive original master against contamination. Meanwhile, adhesion promoter between resin and substrate is also important in the nanoscale pattern. In this work, we have investigated the effect of surface treatment using silane coupling agent as release layer and adhesion promoter for UV-Nanoimprint lithography. Uniform SAM (self-assembled monolayer) could be fabricated by vapor deposition method. Vapor phase process eliminates the use of organic solvents and greatly simplifies the handling of the sample. It was also proven that 3-acryloxypropyl methyl dichlorosilane (APMDS) could strongly improve the adhesion force between resin and substrate compared with common planarization layer such as DUV-30J or oxygen plasma treatment.

non-polar 6H-SiC wafer의 CMP 가공에 대한 연구

  • Lee, Tae-U;Sim, Byeong-Cheol;Lee, Won-Jae
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2009.06a
    • /
    • pp.141-141
    • /
    • 2009
  • Blue light-emitting diodes (LEDs), violet laser diodes 같은 광전소자들은 질화물 c-plane 기판위에 소자로 응용되어 이미 상품화 되어 왔다. 그러나 2족-질화물 재료들은 wurtzite 구조를 가지므로 c-plane에 평행한 자연적인 극성을 띌 뿐만 아니라 결정 내부 stress로 인한 압전현상 또한 나타나 큰 내부 전기장을 형성하게 된다. 이렇게 생성된 내부 전기장은 전자와 홀의 재결합 효율을 감소시키고 소자 응용 시 red-shift의 원인이 되곤 한다. 따라서 최근 들어 m-plane(1-100), a-plane (11-20)같은 무극성을 뛰는 기판 위에 소자를 만드는 방법이 각광을 받고 있는 추세다. 그러나 무극성 기판을 소자에 응용 시 Chemical Mechanical Planarization (CMP)에 의한 가공은 반도체 기판으로써 이용하기 위한 필수 불가결의 공정이다. c면(0001) SiC wafer에 대한 연구는 현재 많이 발표가 되어 있으나 무극성면 SiC wafer에 대한 CMP 공정에 대한 연구사례는 없는 실정이다. 본 연구에서는 C면 (0001)으로 성장된 잉곳을 a면(11-20)과 m(1-100)면으로 절단 후, slurry type (KOH-based colloidal silica slurry, NaOCl), 산화제, 연마제등을 변화하여 CMP 공정을 거침으로서 일어나는 기계 화학적 가공 양상에 대하여 알아보았다. 그 후 표면 형상 분석 하기위해 Atomic Force Microscope(AFM)을 사용하였고, 표면 스크레치를 SEM을 이용해서 알아보았다.

  • PDF

Determination of Optimal Design Level for the Semiconductor Polishing Process by Taguchi Method (다구찌 기법을 활용한 반도체 연마 공정의 최적 설계수준 결정)

  • Sim, Hyun Su;Kim, Yong Soo
    • Journal of Korean Society for Quality Management
    • /
    • v.45 no.2
    • /
    • pp.293-306
    • /
    • 2017
  • Purpose: In this study, an optimal design level of influencing factors on semiconductor polishing process was determined to minimize flexion of both sides on wafers. Methods: First, significant interactions are determined by the stepwise regression method. ANOVA analysis on SN ratio and mean of dependent variable are performed to draw mean adjustment factors. In addition, the optimal levels of mean adjustment factors are decided by comparing means of each level of mean adjustment factors. Results: As a result of ANOVA, a mean adjustment factor was determined as a width of formed flexion on the plate. The mean of the difference has the nearest to 0 in the case when the width of formed flexion has level 2 (4mm). Conclusion: Optimal design levels of semiconductor polishing process are determined as follows; (i) load applied to the wafer carrier has a level 1 (3psi), (ii) load applied to the wafer has a level 1(3psi), (iii) the amount of slurry supplied during polishing has a level 3 (300 co/min), (iv) the width of formed flexion on the plate has level 2 (4mm).

Optimization Of CMP for $SiO_2$ Thin Film with a Control of Temperature in Pad Conditioning Process (패드 컨디셔닝시 온도조절을 통한 산화막 CMP 최적화)

  • Choi, Gwon-Woo;Park, Sung-Woo;Kim, Nam-Hoon;Chang, Eui-Goo;Seo, Yong-Jin;Lee, Woo-Sun
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2004.11a
    • /
    • pp.731-734
    • /
    • 2004
  • As the integrated circuit device shrinks to the smaller dimension, the chemical mechanical polishing (CMP) process was required for the global planarization of inter-metal dielectric(IMD) layer with free-defect. Polishing pads play a key role in CMP, which has been recognized as a critical step to improve the topography of wafers for semiconductor fabrication. It is investigated the performance of $SiO_2-CMP$ process using commercial silica slurry as a pad conditioning temperature increased after CMP process. This study also showed the change of SEM images in the pore geometry on the CMP pad surface after use with a different pad conditioning temperature.

  • PDF

Roles of Phosphoric Acid in Slurry for Cu and TaN CMP

  • Kim, Sang-Yong;Lim, Jong-Heun;Yu, Chong-Hee;Kim, Nam-Hoon;Chang, Eui-Goo
    • Transactions on Electrical and Electronic Materials
    • /
    • v.4 no.2
    • /
    • pp.1-4
    • /
    • 2003
  • The purpose of this study was to investigate the characteristics of slurry including phosphoric acid for chemical-mechanical planarization of copper and tantalum nitride. In general, the slurry for copper CMP consists of alumina or colloidal silica as an abrasive, organic acid as a complexing agent, an oxidizing agent, a film forming agent, a pH control agent and additives. Hydrogen peroxide (H$_2$O$_2$) is the material that is used as an oxidizing agent in copper CMP. But, the hydrogen peroxide needs some stabilizers to prevent decomposition. We evaluated phosphoric acid (H$_3$PO$_4$) as a stabilizer of the hydrogen peroxide as well as an accelerator of the tantalum nitride CMP process. We also estimated dispersion stability and zeta potential of the abrasive with the contents of phosphoric acid. An acceleration of the tantalum nitride CMP was verified through the electrochemical test. This approach may be useful for the development of the 2$\^$nd/ step copper CMP slurry and hydrogen peroxide stability.