• Title/Summary/Keyword: Chemical kinetics

Search Result 1,370, Processing Time 0.02 seconds

The Nature of Acid-Catalyzed Acetalization Reaction of 1,2-Propylene Glycol and Acetaldehyde

  • Cheng, Chen;Chen, Hui;Li, Xia;Hu, Jianli;Liang, Baochen
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.463-467
    • /
    • 2015
  • We investigated catalytic activity of ion-exchange resins in acetalization of 1,2-propylene glycol with acetaldehyde. The impacts of reaction variables, such as temperature, reaction time, catalyst loading and feedstock composition, on the conversion of 1,2-propylene glycol were measured. The life of the catalyst was also studied. Furthermore, the reaction kinetics of 1,2-propylene glycol acetalization was studied. It was found that reaction rate followed the first-order kinetics to acetaldehyde and 1,2-propylene glycol, respectively. Therefore, overall acetalization reaction should follow the second-order reaction kinetics, expressed as. Key words: 1,2-propylene Glycol, 2,4-dimethyl-1,3-dioxolane, Ion-exchange Resin, Polyhydroxy Compounds, Acetalization $r=kC^{nA}_AC^{nB}_B=19.74e^{\frac{-6650}{T}}C^1_AC^1_B$.

Reactive Dye(RB-8, RB-49, RR-218) in Crystallization and Characteristic of Population Density (반응성 염료(RB-8, RB-49, RR-218)의 결정화 및 입도분포 특성)

  • Han, Hyunkak;Lee, Jonghoon;In, Daeyoung
    • Korean Chemical Engineering Research
    • /
    • v.50 no.2
    • /
    • pp.198-203
    • /
    • 2012
  • Salting-out technique was adopted to crystallize dye crystals from dye solution. In this research solubility of dye solution and crystallization kinetics of Reactive dye (RB-8, RB-49, RR-218) was investigated. The empirical expressions of salting-out crystallization kinetics for Reactive dye (RB-8, RB-49, RR-218) in continuous MSMPR crystallizer was RB-8 in crystal growth kinetics $G=7.1{\times}10^{-4}{\Delta}C^{0.67}$ and nucleation kinetics $B^0=3.1{\times}10^{15}{\Delta}C[1.2{\times}10^{-8}+{\Delta}C^{0.7}M_T{^2}]$, RB-49 in crystal growth kinetics $G=5.2{\times}10^{-4}{\Delta}C^{0.3441}$ and nucleation kinetics $B^0=7.2{\times}10^{15}{\Delta}C[3.3{\times}10^{-8}+({\Delta}C)^{0.7}M_T{^2}]$, RR-218 in crystal growth kinetics $G=4.4{\times}10^{-4}{\Delta}C^{0.2361}$ and nucleation kinetics $B^0=6.3{\times}10^{15}{\Delta}C[7.9{\times}10^{-8}+({\Delta}C)^{0.7}M_T{^2}]$. Also, comparison of calculated crystal size distribution applying to characteristic curve method with experimental crystal size showed good agreement.

Folding Mechanism of WT* Ubiquitin Variant Studied by Stopped-flow Fluorescence Spectroscopy

  • Park, Soon-Ho
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.10
    • /
    • pp.2877-2883
    • /
    • 2010
  • The folding kinetics of $WT^*$ ubiquitin variant with valine to alanine mutation at sequence position 26 (HubWA) was studied by stopped-flow fluorescence spectroscopy. While unfolding kinetics showed a single exponential phase, refolding reaction showed three exponential phases. The semi-logarithmic plot of urea concentration vs. rate constant for the first phase showed v-shape pattern while the second phase showed v-shape with roll-over effect at low urea concentration. The rate constant and the amplitude of the third phase were constant throughout the urea concentrations, suggesting that this phase represents parallel process due to the configurational isomerization. Interestingly, the first and second phases appeared to be coupled since the amplitude of the second phase increased at the expense of the amplitude of the first phase in increasing urea concentrations. This observation together with the roll-over effect in the second folding phase indicates the presence of intermediate state during the folding reaction of HubWA. Quantitative analysis of Hub-WA folding kinetics indicated that this intermediate state is on the folding pathway. Folding kinetics measurement of a mutant HubWA with hydrophobic core residue mutation, Val to Ala at residue position 17, suggested that the intermediate state has significant amount of native interactions, supporting the interpretation that the intermediate is on the folding pathway. It is considered that HubWA is a useful model protein to study the contribution of residues to protein folding process using folding kinetics measurements in conjunction with protein engineering.

Kinetics and Mechanism of Ruthenium(III) Catalyzed Oxidation of Butanone and Uncatalyzed Oxidation of Cychlohexanone by Cerium(IV) in Acid Sulphate Medium

  • Sharma, Priyamvada;Hemkar, Shalini;Khandelwal, C.L.;Sharma, P.D.
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.1
    • /
    • pp.28-33
    • /
    • 2012
  • The kinetics of ruthenium(III) chloride catalyzed oxidation of butanone and uncatalyzed oxidation of cyclohexanone by cerium(IV) in sulphuric acid medium have been studied. The kinetic rate law(I) in case of butanone conforms to the proposed mechanism. $$-\frac{1}{2}\frac{d[Ce^{IV}]}{dt}=\frac{kK[Ru^{III}][butanone]}{1+K[butanone]}$$ (1). However, oxidation of cyclohexanone in absence of catalyst accounts for the rate eqn. (2). $$-\frac{1}{2}\frac{[Ce^{IV}]}{dt}=\frac{(k_1+k_1K^'[H^+])[Ce^{IV}][Cyclohexanone]}{1+K_3[HSO_4^-]}$$ (2) Kinetics and activation parameters have been evaluated conventionally. Kinetically preferred mode of reaction is via ketonic and not the enolic forms.

Kinetics Study of $2^{nd}$ Hydrolysis in Concentrated Sulfuric Acid Hydrolysis Process by $^1H-NMR$ Spectroscopy (진한 황산 가수분해에서 2단계 산 가수분해 반응에서 일어나는 반응 동역학(Kinetics)을 $^1H-NMR$을 사용한 연구)

  • Shin, Soo-Jeong;Kim, Yong-Hwan;Cho, Dae-Haeng;Sung, Yong-Joo;Kim, Byung-Ro;Cho, Nam-Seok
    • Proceedings of the Korea Technical Association of the Pulp and Paper Industry Conference
    • /
    • 2011.04a
    • /
    • pp.93-99
    • /
    • 2011
  • Proton-NMR spectroscopic method was applied to kinetics study of concentrated sulfuric acid hydrolysis reaction. Xylan was used as model compounds. Without neutralization steps in proton-NMR methods, this analysis method is valid for analysis of xylose, furfural and formic acid in acid hydrolyzates.

  • PDF

Reaction Kinetics for the Synthesis of Oligomeric Poly (lactic acid)

  • Yoo Dong Keun;Kim Dukjoon;Lee Doo Sung
    • Macromolecular Research
    • /
    • v.13 no.1
    • /
    • pp.68-72
    • /
    • 2005
  • A low-molecular-weight poly(lactic acid) was synthesized through the condensation reaction of L-lactic acid. The effects that the catalyst and temperature have on the reaction rate were studied to determine the optimum reaction conditions. The reaction kinetics increased with temperature up to $210^{\circ}C$, but no further increase was observed above this temperature. Among a few selective catalysts, sulfuric acid was the most effective because it maximized the polymerization reaction rate. Reduction of the pressure was another important factor that enhanced this reactions kinetics.

Dissolution Kinetics of Thiourea in Triglycol Solution (트리글리콜용액에서 싸이오우레아 용해 반응속도론)

  • Li, Hua;Guo, Feng;Hu, Guoqin;Zhao, Lei;Zhang, Yadong
    • Journal of the Korean Chemical Society
    • /
    • v.54 no.1
    • /
    • pp.88-92
    • /
    • 2010
  • Isopropyl mercaptan is an important pharmaceutical intermediate and chemical material. And thiourea and triglycol are the main materials for the synthesis of isopropyl mercaptan. Therefore the dissolution of thiourea in triglycol solution is very important for the production of isopropyl mercaptan. The aims of this study are to examine the dissolution kinetics of thiourea in triglycol solution, and to present an alternative process for producing isopropyl mercaptan. In order to investigate the dissolution kinetics of thiourea in triglycol solution, the concentrations of solution and reaction temperature were selected as experimental parameters. It was determined that the dissolution rate of thiourea increased with the increase in solution concentration and temperature. An empirical equation was used in fitting the data. Statistical analysis indicated small errors and the results should be reliable.

Transesterification Kinetics of Dimethyl Terephthalate with 1,4-Butanediol (디메틸테레프탈레이트와 1,4-부탄디올의 에스테르교환 반응 특성)

  • Cho, Impyo;Lee, Jinhong;Jo, Sanhwan;Cho, Minjung;Han, Myungwan;Kang, Kyungsuk
    • Korean Chemical Engineering Research
    • /
    • v.51 no.1
    • /
    • pp.58-67
    • /
    • 2013
  • PBT (polybutylene terephthalate) has excellent mechanical properties such as low absorption, dimensional stability, abrasion resistance. It is used in manufacturing electronic components, the automobile part and the various precise parts. Bis (hydroxybutyl) terephthalate (BHBT) which is a PBT monomer, can be produced by transesterification reaction of DMT (dimethyl terephthalate) with 1,4-butandiol (BD). The kinetics of transesterification reaction of DMT with BD using zinc acetate as a catalyst was studied in a batch reactor. Previous kinetic studies was carried out in a semibatch reactor where generated methanol was removed so that reverse reactions were not considered in the kinetic expressions, resulting in inaccuracy of the kinetic model. Mathematical models of a batch reactor for the transesterification reaction were developed and used to characterize the reaction kinetics and the composition distribution of the reaction products. More accurate models than previous models was obtained and found to have a good agreement between model predictions and experimental data.