• Title/Summary/Keyword: Chemical hydride

Search Result 229, Processing Time 0.02 seconds

Oxidation of Aromatic Aldehydes with Tetrabutylammonium Fluoride:Competition with the Cannizzaro Reaction

  • Chung, Kyoo-Hyun;Lee, Jae Hak;Chi, Dae Yoon;Moon, Byung-Chul;Lim, Choong Hwan;Kim, Jin Pil
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.8
    • /
    • pp.1203-1205
    • /
    • 2006
  • During the synthesis of 4-fluorobenzaldehyde via the SNAr reaction of 4-nitrobenzaldehyde with TBAF, it was found that an equivalent amount of TBAF could oxidize benzaldehyde to benzoic acid. The reaction of 4-nitrobenzaldehyde with tetrabutylammonium fluoride (TBAF) gave 4-nitrobenzoic acid in high yield. Depending on the reaction conditions, other aromatic aldehydes produced acids with fewer amounts of alcohols. However, this type of oxidation has limited practical applications. Nevertheless, the mechanism is quite different from the Cannizzaro reaction because the amounts of the acid salt and alcohol formed were different.

Pd-Catalyzed Substitution Reactions with Organoindium Reagents in situ Generated from Indium and Allyl or Propargyl Halides

  • Lee, Phil-Ho;Shim, Eun-Kyong;Lee, Koo-Yeon;SeoMoon, Dong;Kim, Sun-Dae
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.1
    • /
    • pp.157-160
    • /
    • 2005
  • Allylindium and propargylindium reagents in situ generated from the reactions of indium with allyl halides and propargyl halides could participate as nucleophiles in Pd-catalyzed substitution reactions of allyl carbonates to produce 1,5-dienes and 1,5-enynes in good yields. $\beta$-Hydride elimination products were produced in case of carbonates having $\beta$-hydrogens. Because organoindium reagents obtained from allyl or propargyl halides and indium have previously not been used to Pd-catalyzed allylic and propargylic substitution reactions, these results should provide more opportunities for the development of new C-C bond forming reactions.

MPV-Reduction of C=O bond with Al-substituted-dialkylalan; A Theoretical Study on Relative Reactivity of Various Carbonyl Substrates

  • Nahm, Keepyung
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.2
    • /
    • pp.546-550
    • /
    • 2014
  • Relative reactivity of various carbonyl and acid derivatives in MPV-type (Meerwein-Ponndorf-Verley) reduction with an DIBAL(F) model has been studied via DFT and MP2 methods. Free energies of initial adduct formation (-Gadd) of DIBAL(F) model and carbonyls are in the order of amide < ester < aldehyde < ketone < acid chloride; in the alan-amide adduct, the developed positive charge at carbonyl carbon is expected to be stabilized by amide resonance, but in the acid chloride adduct it is destabilized by inductive effect of chloride. However the TS barrier energies (${\Delta}G_{TS}$) for the MPV-type hydride reduction of the carbonyl adducts are in the order of aldehyde < ketone < acid chloride << ester < amide; presumably decreasing order of electrophilicity of carbonyl carbon at adducts, which is well correlated with experimental data. It is noted that the relative reactivity of carbonyl derivatives in MPV-type reduction with DIBAL(X) is not governed by the alan-adduct formation energies, but follows the order of electrophilicity of carbonyl carbon of transition states.

Direct Transformation of Carboxylic Acids into Aldehydes through Acyloxy-9-borabicyclo[3.3.1]nonane$^1$

  • Cha Jin Soon;Oh Se Yeon;Lee Kwang Woo;Yoon Mal Sook;Lee Jae Cheol;Kim Jin Euog
    • Bulletin of the Korean Chemical Society
    • /
    • v.9 no.1
    • /
    • pp.48-52
    • /
    • 1988
  • New methods for the direct reduction of carboxylic acids to aldehydes through the treatments of B-acyloxy-9-borabicyclo[3.3.1]nonane (acyloxy-9-BBN) with tert-butyllithium and 9-borabicyclo[3.3.1]nonane or with lithium 9-boratabicyclo[3.3.1]nonane (Li 9-BBNH) are described. Both these systems provide the corresponding aldehydes from various carboxylic acids in high yields. A mechanism for the recuction through stepwise treatment of acyloxy-9-BBN with tert-butylithium and 9-BBN, which seems to involve the hydride migration through 9-BBN, is proposed and discussed in connection with the reduction through treatment of acyloxy-9-BBN with Li 9-BBNH.

Effect of Trialkylborane on the Stereochemistry of Ketone Reduction with Lithium Borohydride

  • Nung-Min Yoon;Jin-Soon Cha;Won-Suh Park
    • Bulletin of the Korean Chemical Society
    • /
    • v.4 no.1
    • /
    • pp.14-17
    • /
    • 1983
  • The effects of trialkylborane on the stereochemistry of ketone reduction with lithium borohydride were studied for the four representative ketones, namely 4-t-butylcyclohexanone, 2-methylcyclohexanone, norcamphor, and camphor. The presence of trialkylborane increased the yields of the less stable alcohols. For example, in the presence of tri-s-butylborane, 42 % yield of cis-4-t-butylcyclohexanol was observed whereas only 8 % yield with lithium borohydride alone in the reduction of 4-t-butylcyclohexanone. The in situ formation of lithium trialkylborohydride, by the hydride transfer from lithium trialkoxyborohydride to trialkylborane, was demonstrated as a possible mechanism for the catalytic effect of trialkylborane.

Shape Selective Oxygen Transfer to Olefins Catalyzed by Sterically Hindered Iron Porphyrins

  • Ahn, Kwang-Hyun;Groves, John T.
    • Bulletin of the Korean Chemical Society
    • /
    • v.15 no.11
    • /
    • pp.957-961
    • /
    • 1994
  • Epoxidation of olefins catalyzed by iron-tetraarylporphyrins were studied to see the shape selectivity in the competing reaction between cis-and trans- or internal and external olefins. Cis-olefins were more reactive than trans-olefins in the competing reaction between cis-and trans-olefins. Interestingly, in the epoxidation of $cis-{\beta}-methystyrene$ by ${\alpha}{\beta}{\alpha}{\beta}$ atropisomer of Fe(III)TNPPPCl and iodosylbenzene, 27% of total product was phenylacetone. The unusually large amount of phenylacetone may be produced by hydride rearrangement of carbocationic intermediate. Regioselectivity of the reaction was also studied by using the most sterically hindered Fe(III)TTPPPCl. In the epoxidation of limonene with Fe(III)TTPPPCl, the disubstituted double bond was more reactive than trisubstituted double bond. This is in contrast to the results obtained with other iron-tetraarylporphyrins. Similar trend was also observed in the competing reaction between mono-and di-substituted olefins.

Theoretical Studies of Solvent Effects on Gas Phase Reactions of Methoxide Ion with Substituted Ethylenes$^\dag$

  • Lee, Ik-Choon;Lee, Bon-Su;Won Jong-Ok
    • Bulletin of the Korean Chemical Society
    • /
    • v.8 no.6
    • /
    • pp.444-449
    • /
    • 1987
  • Solvent effects on gas phase reactions of methoxide ion with substituted ethylenes, $CH_2$ = CHR where R = CN, CHO and $NO_2$, are investigated theoretically using the AM1 method. Results show that the methoxide approaches in-plane in all reactions, but subsequently rotate out-of-plane to form tetrahedral complexes in additon reactions. All reactions of a bare methoxide are found to be exothermic, the exothermicity being the greatest in the ${\beta}$-addition, in which the excess energy is forced to be contained within the ${\beta}$-adduct rendering extreme instability. However a part of the excess energy can be removed by a solvate molecule giving a stable complex prior to the product formation. The hydride transfer processes were found to be unfavorable due to the high activation barriers. The ${\alpha}-H^+$ abstraction process from acrylonitrile becomes endothermic as a result of monosolvation of the methoxide, in agreement with experimental results.

The Synthesis of Trifluoromethylated 1,2-Diphenylvinyl Sulfone and It's Synthetic Utilities

  • 정인화;차재돈;정우진
    • Bulletin of the Korean Chemical Society
    • /
    • v.19 no.12
    • /
    • pp.1355-1359
    • /
    • 1998
  • The treatment of 1,1-bis(phenylthio)-2,2,3,3,3-pentafluoropropylbenzene (1) with 2 equiv. of phenyllithium in THF at -78 ℃ resulted in the formation of isomeric mixture (70: 30) of trifluoromethylated 1,2-diphenylvinyl sulfide 2 in 87% yield. The further oxidation of 2 with m-chloroperbenzoic acid in methylene chloride afforded isomeric mixture (70:30) of trifluoromethylated 1,2-diphenylvinyl sulfone 3 in 87% yield. When 3 was reacted with carbon nucleophiles such as methyllithium, n-butyllithium, phenyllithium and lithium octylide, the corresponding addition-elimination adducts 4, 5, 6 and 7 were obtained in moderate to good yields. The reaction of 3 with 4 equiv. of tributyltin hydride in benzene at reflux temperature provided isomeric mixture (90 : 10) of trifluoromethylated 1,2-diphenylvinyl stannane 8 in 41% yield. The reaction of 8 with methyllithium in the presence of trimethylsilyl chloride gave isomeric mixtures (90: 10) of trifluoromethylated 1,2-diphenylvinyl silane 9 in 88% yield. Finally, the treatment of 8 with Br2 and 12 resulted in the formation of isomeric mixtures (90: 10) of trifluoromethylated 1,2-diphenylvinyl bromide 10 and iodide 11 in 72% and 90% yields, respectively.

Free Radical-mediated Ring Expansion Reactions:Endocyclic Cleavage of Cyclopropylcarbinyl Radicals

  • Lee, Pil Ho;Lee, Byeong Cheol;Lee, Gu Yeon;Lee, Chang Hui;Jang, Suk Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.6
    • /
    • pp.595-603
    • /
    • 2000
  • Ring expansion reactions via endocyclic cleavage of cyclopropylcarbinyl radicals derived from the reaction of [1-benzyloxycarbonylbicyclo[n. 1.O]alk-(n+l)-yl] -1-imidazolethiocarboxylates with tributyltin hydride/AIBN proceeded to produce 3-cycloalkenecarboxylates in good yields. Benzyl (5'-phenoxypentyl) -3-cyclohepten-1 -carboxylate was obtained in 33% yield from the reaction of benzyl 5-methylenebicyclo [4. 1.0]- 1-carboxylates with 4-phenoxybutyl iodide under radical conditions. Selective cleavage of endocyclic bond in cyclopropane to the cyclohexane, results from stabilization of the resultant radical by the carbonyl groups, such as the benzyloxycarbonyl group, which lower the transition state energy for the final cyclopropane cleavage in the ring expansion.

Reaction of 2,2'-Biphenoxyborane in Tetrahydrofuran with Selected Organic Compounds Containing Representative Functional Groups

  • Cha, Jin-Soon;Kim, Jong-Mi;Lee, Ja-Cheol;Lee, Hyung-Soo
    • Bulletin of the Korean Chemical Society
    • /
    • v.12 no.6
    • /
    • pp.612-617
    • /
    • 1991
  • The approximate rates and stoichiometry of the reaction of excess 1,3,2-biphenyldioxaborepin [2,2'-biphenoxyborane (BPB)] with selected organic compounds containing representative functional groups under the standardized conditions (tetrahydrofuran, hydride to compound being 4 : 1, room temperature) was examined in order to define the characteristics of the reagent for selective reductions and compare its reducing power with those of other substituted boranes. The results indicate that BPB is unique and the reducing power is much stronger than that of other dialkoxyboranes, such as catecholborane and di-s-butoxyborane. BPB reduces aldehydes, ketones, quinones, lactones, tertiary amides, and sulfoxides readily. Carboxylic acids, anhydrides, esters, and nitriles are also reduced slowly. However, the reactions of acid chlorides, epoxides, primary amides, nitro compounds, and disulfides with this reagent proceed only sluggishly.