• Title/Summary/Keyword: Chemical hazards

Search Result 242, Processing Time 0.02 seconds

DNA and DNA-CTMA composite thin films embedded with carboxyl group-modified multi-walled carbon nanotubes

  • Dugasani, Sreekantha Reddy;Gnapareddy, Bramaramba;Kesama, Mallikarjuna Reddy;Ha, Tai Hwan;Park, Sung Ha
    • Journal of Industrial and Engineering Chemistry
    • /
    • v.68
    • /
    • pp.79-86
    • /
    • 2018
  • Although the intrinsic characteristics of DNA molecules and carbon nanotubes (CNT) are well known, fabrication methods and physical characteristics of CNT-embedded DNA thin films are rarely investigated. We report the construction and characterization of carboxyl (-COOH) group-modified multi-walled carbon nanotube (MWCNT-COOH)-embedded DNA and cetyltrimethyl-ammonium chloride-modified DNA (DNA-CTMA) composite thin films. Here, we examine the structural, compositional, chemical, spectroscopic, and electrical characteristics of DNA and DNA-CTMA thin films consisting of various concentrations of MWCNT-COOH. The MWCNT-COOH-embedded DNA and DNA-CTMA composite thin films may offer a platform for developing novel optoelectronics, energy harvesting, and sensing applications in physical, chemical, and biological sciences.

Analysis of Secondary Battery Trends Using Topic Modeling: Focusing on Solid-State Batteries

  • Chunghyun Do;Yong Jin Kim
    • Asian Journal of Innovation and Policy
    • /
    • v.12 no.3
    • /
    • pp.345-362
    • /
    • 2023
  • As the widespread adoption and proliferation of electric vehicles continue, the secondary battery market is experiencing rapid growth. However, lithium-ion batteries, which constitute a majority of secondary batteries, present high risks of fire and explosion. Solid-state batteries are thus garnering attention as the next-generation batteries since they eliminate fire hazards and significantly reduce the risk of explosions. Against this background, the study aimed to analyze research trends and provide insights by examining 2,927 domestic papers related to solid-state batteries over the past decade (2013-2022). Specifically, we used topic modeling to extract major keywords associated with solid-state batteries research and to explore the network characteristics across major topics. The changes in research on solid-state batteries were analyzed in-depth by calculating topic dominance by year. The findings provide an overview of the emerging trends in domestic solid-state battery research, and might serve as a valuable reference in shaping long-term research directions.

Hazard Analysis and Determination of CCPs for Powdered Raw Grains and Vegetables, Saengshik (생식의 위해요인 분석 및 중요관리점 설정)

  • Kim, Dong-Ju;Ha, Sang-Do;Ryu, Kyung;Park, Ki-Hwan
    • Korean Journal of Food Science and Technology
    • /
    • v.36 no.6
    • /
    • pp.1032-1040
    • /
    • 2004
  • Biological, physical, and chemical hazards in raw manufacturing processes of Saengshik, powdered raw grains and vegetables, were analyzed to identify critical control points (CCPs). In raw materials, total plate and coliform counts ranged 2.82-8.23 and $1.40-6.57\;{\log}_{10}\;CFU/g$, respectively. In final products, total plate counts, except for Lactobacillus spp., were $1.51-7.40\;{\log}_{10}\;CFU/g$. During processing steps, both total plate and coliform counts decreased after washing, whereas no changes were observed after freeze-drying. Physical hazards, such as contents of metal and other contaminants, and chemical hazards, such as moisture content, were assessed. Suggested CCPs for Saengshik were: washing process for controlling microbial contamination, freeze-drying process for controlling moisture content to prevent deterioration and growth of microorganisms, and pulverization process for controlling contamination of foreign substances such as metals. These results will provide guideline to apply HACCP system standards to this product.

Contamination and Mobility of Toxic Trace Elements in Tailings of Samsanjeil Mine (삼산제일광산 광미 내 유해 미량원소의 오염 및 이동도)

  • Yeon Kyu-Hun;Lee Pyeong-Koo;Youm Seung-Jun;Choi Sang-Hoon
    • Economic and Environmental Geology
    • /
    • v.38 no.4 s.173
    • /
    • pp.451-462
    • /
    • 2005
  • In order to examine the extent of environmental contamination at abandoned Samsanjeil Cu mines in Kosung-kun, Kyeongsangnam-do, we have investigated the contaminations and mobility of toxic trace elements from mine wastes including about 280,000 tonnages of tailings by chemical experiments (total extraction, partial extraction by 0.1N HCI and sequential extraction procedure). Total concentrations of trace elements showed that Cu, As, Co, Zn, Pb, and Cd concentrations in tailings were 14.0, 3.6, 3.1, 2.1, 2.1 and 1.6 times greater than those in background soil, respectively. From the proportion of metals bound to the exchangeable and carbonate fractions, the comparative mobility of metals decrease in order of $Zn(29.0\%)>Cu(12.3\%)Pb(9.6\%)>Cd(3.0\%)>As=Co(0.0\%)$. Based on the concentrations, chemical speciations of tailings, waste rock and nearby soil, it was revealed that Cu and Zn were the most possible elements to contaminate the surrounding environment in Samsanjeil mine area. In addition, the tailings had total trace metal concentrations below Dutch guideline values except Cu, and they might not affect adverse impact on environment.

Simulation and Analysis of Response Plans against Chemical and Biological Hazards (화학 생물 위험 대응 시뮬레이션 및 분석)

  • Han, Sangwoo;Seo, Jiyun;Shim, Woosup
    • Journal of the Korea Society for Simulation
    • /
    • v.30 no.2
    • /
    • pp.49-64
    • /
    • 2021
  • M&S techniques are widely used as scientific means to systematically develop response plans to chemical and biological (CB) hazards. However, while the theoretical area of hazard dispersion modeling has achieved remarkable practical results, the operational analysis area to simulate CB hazard response plans is still in an early stage. This paper presents a model to simulate CB hazard response plans such as detection, protection, and decontamination. First, we present a possible way to display high-fidelity hazard dispersion in a combat simulation model, taking into account weather and terrain conditions. We then develop an improved vulnerability model of the combat simulation model, in order to simulate CB damage of combat simulation entities based on other casualty prediction techniques. In addition, we implement tactical behavior task models that simulate CB hazard response plans such as detection, reconnaissance, protection, and decontamination. Finally, we explore its feasibility by analyzing contamination detection effects by distributed CB detectors and decontamination effects according to the size of the {contaminated, decontamination} unit. We expect that the proposed model will be partially utilized in disaster prevention and simulation training area as well as analysis of combat effectiveness analysis of CB protection system and its operational concepts in the military area.

A study on the Rationalization of Safety Management in Chemical Facilities: Focused on Architecture Fire Resistance Standards (화학물질 취급시설의 안전관리 합리화 방안 연구: 건축물 내화기준 중심)

  • Lee, Eun-Byul;Yoo, Byung-Tae
    • Fire Science and Engineering
    • /
    • v.33 no.3
    • /
    • pp.91-97
    • /
    • 2019
  • In Korea, the Ministry of Environment's Chemical Control Act is the basis for hazardous chemical substances and safety management is being carried out. In particular, the standards for the installation and management of facilities are strongly managed. There were problems in the early stages of implementation, conflict with other laws, size of facilities and non-reflection of material properties. In this study, more realistic and reasonable improvement was planned for the fire-resistance standard of buildings among these facilities. We compared the fire resistance standards of buildings in the Korean similar chemical facility safety management ordinance. Key problems were identified through examples of representative complaints concerning the criteria for facilities. Finally, the Chemical Control Act provided an improvement measure to apply the building fire-resistance standard by clarifying the size and chemical of facilities. In the future, the results of this study are expected to be consistent with the basic purpose of the Chemicals Contral Act considering environmental hazards and contribute to the standard of handling facilities of reasonable chemical management laws that can be applied to the industry in reality.

Study on applying to Hazard Classification Criteria of Chemicals subject to Material Safety Data Sheets (물질안전보건자료 대상물질의 유해성 분류기준 적용 연구)

  • Lee, Hye Jin;Lee, Naroo;Lee, In Seop
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.30 no.3
    • /
    • pp.280-291
    • /
    • 2020
  • Objectives: Hazard classification is a controversial issue in the new MSDS system in which chemical companies have to prepare and submit MSDS for chemicals that they manufacture or import to the competent authorities according to the amended Occupational Safety and Health Act. The aim of this study is to suggest how to apply and manage harmonized hazard classification criteria and results by investigating current hazard classification systems and trends. Methods: The domestic issues about different hazard classification criteria and results were investigated by reviewing the literature and business outcomes regarding KOSHA. We also checked official and unofficial reports from the UN to understand international discussion about the topic. Chemical hazard classification results from agencies providing chemical information were analyzed to compare a harmonized rate between classifications. Furthermore, a field survey of a few chemical companies was conducted. Results: Under the related competent authorities, an integrated standard proposal was developed to harmonize the domestic hazard classification criteria. Although harmonized chemical information is strongly needed, we recognized the uncertainty and difficulty of harmonized hazard classification from the UN global list project review. In practice the harmonization rate of the classification was generally low between the classification in KOSHA, MoE, and EU CLP. Among hazard classes, health hazards largely led the disharmony. The field survey revealed a change of perception that the main body of chemical information production is manufacturers. Approaches and solutions about hazard classification issues differed depending on business size, types of chemical handling, and other factors. Conclusions: We proposed reasonable ways by time and step to apply hazard classification in the new MSDS system. Chemical manufacturers should make and offer chemical information including responsible hazard classifications. The government should primarily accept these classifications, evaluate them by priority, and support or supervise workplaces in order to communicate reliable chemical information.

A Study on Fire Protection of Chemical Plants Using FRA (Fire Risk Assessment) Method (FRA(Fire Risk Assessment)기법을 이용한 화학공장의 Fire Protection에 관한 연구)

  • Han, Seung-Hoon;Yoo, Byung-Tae;Tae, Chan-Ho;Chae, Chung Keun;Ko, Jae Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.20 no.5
    • /
    • pp.17-26
    • /
    • 2016
  • Chemical plants and oil gas refinery facilities are intrinsically vulnerable to industrial hazards, such as explosion or fire. Especially, the fire is extremely dangerous to facility structures and plant personnel because of direct flame, radiant heat and smoke. In addition, it has the ripple effect of destroying infra-structures and polluting the environment. In an effort to tackle these potential industrial risks, the procedure of FRA techniques in chemical plants were investigated. The main focus was put on the time variation of physical properties of the main building, i.e. control rooms, warehouses and electrical substations, from a direct flame contact and radiant heat. The deformation of a building due to fire was monitored and modeled with respect to time variable. A variety of case studies, domestic and abroad, was tested in the model to verify the FRA procedure. The developed model was proven to be highly effective to reduce the possible risks at chemical plants. An accurate accident frequency prediction and damage quantification was made by the developed model.

A Review on the Classification of Skin Toxicity Hazards Due to Skin Contact with Chemical Substances (화학물질 피부접촉에 의한 피부독성 유해성 분류에 관한 고찰)

  • Kwon, Buhyun;Jo, Jihoon;Lee, Dohee
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.28 no.2
    • /
    • pp.175-189
    • /
    • 2018
  • Objectives: In this study, we analyze statistics on industrial accidents caused by chemical skin contact and provide skin toxicity hazard information on the related domestic system and circulation volumes. Methods and Results: We analyzed occupational fatalities and skin diseases caused by chemical leaks and contact from 2007 to 2016(10 years) and surveyed data on occupational skin diseases using the 2014 work environment survey data. The NIOSH Skin Notation Profiles for 57 chemical substances, which are provided to prevent occupational skin diseases, were searched and hazard information on skin contact with chemical substances was classified. In order to identify skin toxicity information among domestically distributed and legally regulated substances and to investigate skin-toxic substances, MSDS basic data on 19,740 chemical substances provided on the homepage of Korea Occupational Safety & Health Agency were searched. Acute toxicity(dermal) category 1-4 substances totaled 1,020, and the number of chemical substances classified as category 1 and 2 substances were 135 and 137, respectively. In the chemical substances prescribed by the Ministry of Employment and Labor, 173 substances were classified into acute toxicity(dermal) categories 1-4, 58 of which correspond to category 1 or 2. Conclusions: Within the present range of industrial accidents, the proportion of skin diseases due to contact with chemicals is not high. However, there is always a risk of occupational skin diseases due to increasing chemicals and due to the use of new chemicals. It is hoped that this information will be used by workplace safety and health officials and health and safety experts to prevent acute toxity(dermal) due to chemical skin contact.

Issues of Natech Risk Management (Natech위험의 개념 및 주요 쟁점)

  • Oh, Yoon-Kyung
    • Journal of Environmental Policy
    • /
    • v.13 no.4
    • /
    • pp.79-105
    • /
    • 2014
  • Natech risk is a type of complex disasters that natural hazards trigger technological disaster or industrial accidents. Research on Natech risk has been started from the mid-1990s in European countries and the Unites States, and drawn much more attention after the Fukushima nuclear accident caused by the 2011 East Japan earthquake. While early studies on Natech risk have focused on the causal natural hazards and possibility to occur, and the resulting spill of hazardous materials from the perspective of science and engineering, the recent research interests lie on effective Natech risk management. Especially, emphasizing the difference of Natech risk management from traditional disaster management, issues of uncertainty management, integration between natural disaster and technological disaster, and responsibility, has been drawn attention. In Korea, Natech risk has not been introduced as a research topic. Although some regulatory improvements have been made in nuclear safety and chemical Substance management after the Fukushima disaster, the potential impact of natural hazards in these areas has not been considered yet. It is necessary to raise the issues of Natech risk management in research and policy areas through active discussion and interdisciplinary approaches.

  • PDF