• 제목/요약/키워드: Chemical genomics

검색결과 145건 처리시간 0.043초

In Vitro Metabolism of a New Cardioprotective Agent, KR-33028 in the Human Liver Microsomes and Cryopreserved Human Hepatocytes

  • Kim Hyojin;Yoon Yune-Jung;Kim Hyunmi;Cha Eun-Young;Lee Hye Suk;Kim Jeong-Han;Yi Kyu Yang;Lee Sunkyung;Cheon Hyae Gyeong;Yoo Sung-Eun;Lee Sang-Seop;Shin Jae-Gook;Liu Kwang-Hyeon
    • Archives of Pharmacal Research
    • /
    • 제28권11호
    • /
    • pp.1287-1292
    • /
    • 2005
  • KR-33028 (N-[4-cyano-benzo[b]thiophene-2-carbonyl]guanidine) is a new cardioprotective agent for preventing ischemia-reperfusion injury. This study was performed to identify the metabolic pathway of KR-33028 in human liver microsomes and to compare its metabolism with that of cryopreserved human hepatocytes. Human liver microsomal incubation of KR-33028 in the presence of NADPH and UDPGA resulted in the formation of four metabolites, M1, M2, M3, and M4. M1 and M2 were identified as 5-hydroxy-KR-33028 and 7-hydroxy-KR-33028, respectively, on the basis of LC/MS/MS analysis with the synthesized authentic standard. M3 and M4 were suggested to be dihydroxy-KR-33028 and hydroxy-KR-33028-glucuronide, respectively. Metabolism of KR-33028 in cryopreserved human hepatocytes resulted in the formation of M1, M2, and M4. These data show a good correlation between major metabolites formed in human liver microsomes and cryopreserved human hepatocytes. In addition, KR­33028 was found to inhibit moderately the metabolism of CYP1A2 substrates. Based on the results obtained metabolic pathway of KR-33028 is proposed.

cDNA Microarray gene expression profiling of hydroxyurea, paclitaxel and p-anisidine that are genotoxic compounds with differing tumorigenicity results

  • Lee, Michael;Jung Kwon;Kim, Se-Nyun;Kim, Ja-Eun;Koh, Woo-Suk;Song, Chang-Woo;Chung, Moon-Koo
    • 한국독성학회:학술대회논문집
    • /
    • 한국독성학회 2003년도 춘계학술대회 논문집
    • /
    • pp.36-37
    • /
    • 2003
  • The potential application of toxicogenomics to predictive toxicology has been discussed widely, but the utility of the approach remains largely unproven. Using cDNA microarrays, we have compared the gene expression profiles produced in mouse lymphoma cells by three genotoxic compounds, hydroxyurea (a carcino- gen), p-anisidine (a noncarcinogen) and paclitaxel (carcinogenicity unknown). (omitted)

  • PDF

Synthesis and Characterization of Fructooligosaccharides Using Levansucrase with a High Concentration of Sucrose

  • Seo Eun-Seong;Lee Jin-Ha;Choi Jae-Young;Seo Mi-Young;Lee Hee-Sun;Chang Seuk-Sang;Lee Hyung-Jong;Choi Jeong-Sik;Kim Doman
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • 제9권5호
    • /
    • pp.339-344
    • /
    • 2004
  • A method for synthesizing branched fructo-oligosaccharides (BFOS) with a high concentration of sucrose ($1{\~}3$ M) was developed using levansucrase prepared from Leuconortoc mesenteroides B-1355C. The degree of polymerization of oligosaccharides synthesized according to the present method ranged from 2 to over 15. The synthesized BFOS were stable at a pH ranges of 2 to 4 under $120^{\circ}C$. The percentage of BFOS in the reaction digest was $95.7\%$ (excluding monosaccharides; $4.3\%$ was levan). BFOS reduced the insoluble glucan formation by Streptococcus sobrinus on the surfaces of glass vials or stainless steel wires in the presence of sucrose. They also reduced the growth and acid productions of S, sobrinus. Oligosaccharides can be used as sweeteners for foods such as beverages requiring thermo- and acid-stable properties and 3s potential inhibitors of dental caries.

Chemical Genetics and Chemical Genomics: High Throughput Profiling of Drugs, Therapeutic Genes and Disease Networks

  • Kim, Tae-Kook
    • 대한약학회:학술대회논문집
    • /
    • 대한약학회 2003년도 Proceedings of the Convention of the Pharmaceutical Society of Korea Vol.2-1
    • /
    • pp.97-99
    • /
    • 2003
  • With advances in determining the entire DNA sequence of the human genome, it is now critical to systematically identify the function of a number of genes in the human genome. These biological problems, especially those in human diseases including cancer, should be addressed in human cells in which genetic approaches have been extremely difficult to implement. To overcome this, my efforts have focused on the development of a novel “chemical genetic/genomic approach” that uses small molecules to “probe and identify” the function of genes in specific biological process or pathway in human cells. (omitted)

  • PDF