• Title/Summary/Keyword: Chemical factors

Search Result 2,740, Processing Time 0.032 seconds

Extraction of La(III) by a nonionic microemulsion containing D2EHPA in hollow fiber contactor

  • Ou, Huilin;Gong, Fuzhong;Tang, Yanxia;Luo, Yan;Liu, Liheng
    • Membrane and Water Treatment
    • /
    • v.12 no.2
    • /
    • pp.75-82
    • /
    • 2021
  • This study aimed to prepare a W/O nonionic microemulsion system(MEs) consisting of OP-4[polyoxyethylene(4) nonylphenol], OP-7[polyoxyethylene(7) nonylphenol], 1-hexanol, D2EHPA, kerosene and HCl solution and applied to the extraction of La(III) from chloride aqueous solution within the polysulfone hollow fiber contactor (HFC),laboratory-scale experiments were carried out to investigate the recovery of La(III) using as-prepared microemulsion from the simulation wastewater containing La(III),Al(III) and Fe(III). The right weight ratio(Rs) of OP-4 to OP-7 was firstly confirmed through determination of the solubilization capacity of HCl solution(W0,HCl) in microemulsion, the effect of several factors such as the HCl concentration, temperature and effective extraction time on the extraction efficiency of La(III) was discussed. Results showed that the acceptable Rs was 4:6 to prepare the W/O MEs. The extraction yield of La(III) increased with the increasing of HCl concentration, temperature and effective extraction time and reaches to 97.3% while using five-stage modules. The recovery yield of La(III) from simulation La-bearing wastewater was 90.6%.

Chemical Interaction in Downstream Flows of SNG/Air Symmetric Premixed Counterflow Flame (SNG/Air 예혼합 대향류 대칭화염의 후류 유동장에서 화학적 상호작용)

  • KANG, YEONSE;LEE, KEEMAN
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.29 no.6
    • /
    • pp.668-679
    • /
    • 2018
  • Experimental and numerical data were compared through a counterflow burner for the characteristic of basic flame about SNG- C11. In order to use the numerical mechanism accurately, the validation was carried out at strain rate ($a_g=30$, $120s^{-1}$) and the UCSD model showed satisfactory results. The effective Lewis number of the extinction boundary, and the behavior of extinction for the symmetric flames of the SNG-C11, could be explained through the trend of $Le_V$, and the flame of the extinction condition was inspected by the major species, key radicals and the chemical reaction paths. The interactions phenomenon in the merged flames has chemical reaction path for producing $HO_2$ were generated at stagnation point. It can be expected the one of major factors in interaction phenomenon.

Review on sodium corrosion evolution of nuclear-grade 316 stainless steel for sodium-cooled fast reactor applications

  • Dai, Yaonan;Zheng, Xiaotao;Ding, Peishan
    • Nuclear Engineering and Technology
    • /
    • v.53 no.11
    • /
    • pp.3474-3490
    • /
    • 2021
  • Sodium-cooled fast reactor (SFR) is the preferred technology of the generation-IV fast neutron reactor, and its core body mainly uses nuclear-grade 316 stainless steel. In order to prolong the design life of SFRs to 60 years and more, it is necessary to summarize and analyze the anti-corrosion effect of nuclear grade 316 stainless steel in high temperature sodium environment. The research on sodium corrosion of nuclear grade 316 stainless steel is mainly composed of several important factors, including the microstructure of stainless steel (ferrite layer, degradation layer, etc.), the trace chemical elements of stainless steel (Cr, Ni and Mo, etc) and liquid impurity elements in sodium (O, C and N, etc), carburization and mechanical properties of stainless steel, etc. Through summarizing and constructing the sodium corrosion rate equations of nuclear grade 316 stainless steel, the stainless steel loss of thickness can be predicted. By analyzing the effects of temperature, oxygen content in sodium and velocity of sodium on corrosion rate, the basis for establishing integrity evaluation standard of SFR core components with sodium corrosion is provided.

Flow Characteristics Analysis for the Chemical Decontamination of the Kori-1 Nuclear Power Plant

  • Cho, Seo-Yeon;Kim, ByongSup;Bang, Youngsuk;Kim, KeonYeop
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.1
    • /
    • pp.51-58
    • /
    • 2021
  • Chemical decontamination of primary systems in a nuclear power plant (NPP) prior to commencing the main decommissioning activities is required to reduce radiation exposure during its process. The entire process is repeated until the desired decontamination factor is obtained. To achieve improved decontamination factors over a shorter time with fewer cycles, the appropriate flow characteristics are required. In addition, to prepare an operating procedure that is adaptable to various conditions and situations, the transient analysis results would be required for operator action and system impact assessment. In this study, the flow characteristics in the steady-state and transient conditions for the chemical decontamination operations of the Kori-1 NPP were analyzed and compared via the MARS-KS code simulation. Loss of residual heat removal (RHR) and steam generator tube rupture (SGTR) simulations were conducted for the postulated abnormal events. Loss of RHR results showed the reactor coolant system (RCS) temperature increase, which can damage the reactor coolant pump (RCP)s by its cavitation. The SGTR results indicated a void formation in the RCS interior by the decrease in pressurizer (PZR) pressure, which can cause surface exposure and tripping of the RCPs unless proper actions are taken before the required pressure limit is achieved.

Durability enhancement of anion exchange membranes for water electrolysis: an updated review

  • Akter, Mahamuda;Park, Jong-Hyeok;Kim, Beom-Seok;Lee, Minyoung;Jeong, Dahye;Shin, Jiyun;Park, Jin-Soo
    • Journal of the Korean institute of surface engineering
    • /
    • v.55 no.6
    • /
    • pp.319-327
    • /
    • 2022
  • Ion exchange membranes have been developed from laboratory tools to industrial products with significant technical and trade impacts in the last 70 years. Today, ion exchange membranes are successfully applied for water and energy for different electro-membrane processes. Hydrogen could be produced by electrochemical water splitting using renewable energy, for example, solar, biomass, geothermal and wind energy. This review briefly summarizes the recent studies reporting the state-of-the-art anion-exchange membrane water electrolysis, especially focusing on the enhancement of the durability of anion-exchange membranes. Anion-exchange membrane water electrolysis could be used as inexpensive non-noble metal electrocatalysts that are capable of producing low cost of hydrogen. However, the main challenge of anion-exchange membrane water electrolysis is to increase the performance and durability. In this mini review, the limiting factors of the durability and the technology enhancing the durability will be discussed for anion exchange membrane water electrolysis.

Dynamic shear behavior of geosynthetic-soil interface considering thermalchemical factors (열-화학적 인자를 고려한 복층터널의 지반-토목섬유의 접촉면 전단거동)

  • Jang, Dong-In;Kwak, Chang-Won;Park, Inn-Joon
    • Journal of Korean Tunnelling and Underground Space Association
    • /
    • v.18 no.2
    • /
    • pp.213-220
    • /
    • 2016
  • The needs for the utilization of space in the urban ara due to the increasing population and traffic volume. A Double-deck tunnel can be an appropriate solution. Geosynthetics are inevitably installed between ground and tunnel lining, therefore, geosynthetic-soil interface is also comprises. Dynamic shear behavior of geosynthetic-soil interface affects the dynamic behavior of tunnel, and experimental study is required since the behavior is very complicated. In this study, chemical factors such as acid and basic element in the groundwater and temperature are considered in the laboratory test. Multi-purpose Interface Apparatus(M-PIA) is utilized and submerging periods are 60 and 960 days. Consequently, dynamic shear degradation of geosynthetic-soil interface considering chemical and thermal factors are verified.

An Analysis of Threat Factors for Strengthen Maritime Safety around Delphi/AHP-Based Launch Site and Flight Paths (Delphi/AHP 기반 발사장 주변 및 비행경로의 해상안전 강화를 위한 위협요인 분석)

  • Ahn-Tae Shin;Byung-Mun Park;Hun-Soo Byun
    • Korean Chemical Engineering Research
    • /
    • v.61 no.2
    • /
    • pp.208-216
    • /
    • 2023
  • In this study, using the Delphi method, 20 responses to 4 questions (need for launch safety control, top-priority considerations for ensuring public safety during launch, necessary improvements for securing maritime safety, and maritime safety threat factors) regarding launch vehicles and public safety were obtained from experts, and their importance was evaluated to analyze the factors that threaten the reinforcement of maritime safety around launch sites and flight paths when launching. According to the results of an analytic hierarchy process (AHP) analysis, the consistency ratio of the four questions was 4.8%, which is lower than CR ≤ 0.1(10%), and the consistency percentage of the lower measurement indicators was 3.9~5.7%. The derived importance and priority of maritime safety threat factors during launching were in the following order: Substantial human and physical damage in case of launch accidents(0.36), Prepare legal bases (e.g., penalty details) regarding maritime control(0.32), Secure the safety of personnel, equipment, and facilities in danger zone(0.31), Unauthorized entry of vessels in maritime control zones and non-compliance to restrictions(0.30). This article can serve as a reference for strengthening maritime safety in areas around launch sites and flight paths.

Optimization and Elucidation of Interactions between Ammonium, Nitrate and Phosphate in Centella asiatica Cell Culture Using Response Surface Methodology

  • Omar Rozita;Abdullah M. A.;Hasan M. A.;Marziah M.;Mazlina M.K.Siti
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.10 no.3
    • /
    • pp.192-197
    • /
    • 2005
  • The effects of macronutrients $(NO_3^-,\; NH_4^+\;and\;PO_4^{3-})$ on cell growth and triterpenoids production in Centella asiatica cell suspension cultures were analyzed using the Box­Behnken response surface model experimental design. In screening and optimization experiments, $PO_4^{3-}$ as a single factor significantly influenced cell growth where increasing the phosphate level from 0.1 to 2.4 or 2.6 mM, elevated cell growth from 3.9 to $14\~16g/L$. The optimum values predicted from the response surface model are 5.05mM $NH_4^+$, 15.0mM $NO_3^-$ and 2.6mM $PO_4^{3-}$, yielding 16.0g/L cell dry weight with $99\%$ fitness to the experimental data. While the $NH_4^+-NO_3^-$ interaction influenced cell growth positively in the optimization experiment, $NH_4^+$ and $NO_3^-$ as single factors; and interactions of $NO_3^--PO_4^{3-},\;NH_4^+-PO_4^{3-}$ and $NH_4^+-NO_3^-$ were all negative in the screening experiment. Cell growth and the final pH level were positively affected by $PO_4^{3-}$, but negatively affected by $NH_4^+\;and\;NH_4^+-PO_4^{3-}$ interactions. The different effects of factors and their interactions on cell growth and final pH are influenced by a broad or narrow range of macronutrient concentrations. The productions of triterpenoids however were lower than 4mg/g cell dry weight.

Physicochemical water quality characteristics in relation to land use pattern and point sources in the basin of the Dongjin River and the ecological health assessments using a fish multi-metric model

  • Jang, Geon-Su;An, Kwang-Guk
    • Journal of Ecology and Environment
    • /
    • v.40 no.1
    • /
    • pp.34-44
    • /
    • 2016
  • Background: Little is known about how chemical water quality is associated with ecological stream health in relation to landuse patterns in a watershed. We evaluated spatial characteristics of water quality characteristics and the ecological health of Dongjin-River basin, Korea in relation to regional landuse pattern. The ecological health was assessed by the multi-metric model of Index of Biological Integrity (IBI), and the water chemistry data were compared with values obtained from the health model. Results: Nutrient and organic matter pollution in Dongjin-River basin, Korea was influenced by land use pattern and the major point sources, so nutrients of TN and TP increased abruptly in Site 4 (Jeongeup Stream), which is directly influenced by wastewater treatment plants along with values of electric conductivity (EC), bacterial number, and sestonic chlorophyll-a. Similar results are shown in the downstream (S7) of Dongjin River. The degradation of chemical water quality in the downstream resulted in greater impairment of the ecological health, and these were also closely associated with the landuse pattern. Forest region had low nutrients (N, P), organic matter, and ionic content (as the EC), whereas urban and agricultural regions had opposite in the parameters. Linear regression analysis of the landuse (arable land; $A_L$) on chemicals indicated that values of $A_L$ had positive linear relations with TP ($R^2=0.643$, p < 0.01), TN ($R^2=0.502$, p < 0.05), BOD ($R^2=0.739$, p < 0.01), and suspended solids (SS; ($R^2=0.866$, p < 0.01), and a negative relation with TDN:TDP ratios ($R^2=0.719$, p < 0.01). Conclusions: Chemical factors were closely associated with land use pattern in the watershed, and these factors influenced the ecological health, based on the multimetric fish IBI model. Overall, the impairments of water chemistry and the ecological health in Dongjin-River basin were mainly attributes to point-sources and land-use patterns.

Experimental investigation of impact-sliding interaction and fretting wear between tubes and anti-vibration bars in steam generators

  • Guo, Kai;Jiang, Naibin;Qi, Huanhuan;Feng, Zhipeng;Wang, Yang;Tan, Wei
    • Nuclear Engineering and Technology
    • /
    • v.52 no.6
    • /
    • pp.1304-1317
    • /
    • 2020
  • The tubes in a heat exchanger, such as a steam generator (SG), are subjected to crossflow, and interaction between tubes and supports can happen, which can cause fretting wear of tubes. Although many experiments and models have been established, some detailed mechanisms are still not sufficiently clear. In this work, more attention is paid to obtain the regulation of impact and sliding in the complex process and many factors, such as excitation forces and clearances. The responses and contact forces were analyzed to obtain clear understanding of the influences of these factors. Room temperature tests in the air were established. The results show that the effect of clearance on the normal work rate is not monotonous and instead has two peaks. The force ratio can influence the normal work rate by changing the distribution of contact angles, which can result in higher sliding in the contact process. Fretting wear tests are conducted, and the wear surfaces are analyzed by a scanning electron microscope (SEM) and energy dispersive X-ray spectrometer (EDX). The results of this work can serve as a reference for impactsliding contact analysis between AVBs and tubes in steam generators.