• Title/Summary/Keyword: Chemical factors

Search Result 2,740, Processing Time 0.032 seconds

Influence of D.I. Water Pressure and Purified $N_2$ Gas on the Inter Level Dielectric-Chemical Mechanical Polishing Process (탈이온수의 압력과 정제된 $N_2$ 가스가 ILD-CMP 공정에 미치는 영향)

  • Kim, Sang-Yong;Seo, Yong-Jin;Kim, Chang-Il;Chung, Hun-Sang;Lee, Woo-Sun;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2000.04b
    • /
    • pp.31-34
    • /
    • 2000
  • It is very important to understand the correlation of between inter layer dielectric(ILD) CMP process and various facility factors supplied to equipment system. In this paper, the correlation between the various facility factors supplied to CMP equipment system and ILD CMP process were studied. To prevent the partial over-polishing(edge hot-spot) generated in the wafer edge area during polishing, we analyzed various facilities supplied at supply system. With facility shortage of D.I. water(DIW) pressure, we introduced an adding purified $N_2(PN_2)$ gas in polishing head cleaning station for increasing a cleaning effect. DIW pressure and PN2 gas factors were not related with removal rate, but edge hot-spot of patterned wafer had a serious relation. We estimated two factors (DIW pressure and PN2 gas) for the improvement of CMP process. Especially, we obtained a uniform planarity in patterned wafer and prohibited more than 90% wafer edge over-polishing. In this study, we acknowledged that facility factors supplied to equipment system played an important role in ILD-CMP process.

  • PDF

A Proposal for the Education Vision for Chemical Engineering Field (화학공학분야 교육비전 수립 연구)

  • Lee, Kyu-nyo;Hwang, Ju-young;Yi, Kwang-bok;Han, Su-kyoung;Rhee, Young-woo
    • Journal of Engineering Education Research
    • /
    • v.21 no.6
    • /
    • pp.99-107
    • /
    • 2018
  • The purpose of this study is to establish and propose educational vision of chemical engineering field in order to search for academic identity and future education direction in chemical engineering field. In order to achieve this research purpose, we investigate the literature and data on the vision, educational goals, and curriculum of the department of chemical engineering in domestic and foreign universities. We also analyze the SWOT of internal and external environmental factors respectively. The validity of the proposal was verified through delphi survey with delphi panels and the vision was developed by revising and improving upon the opinions of professionals. The vision is comprised of the value and mission of learning, the educational purpose, and the educational goal. The first stage is value and mission of chemical engineering. The educational purposes and the educational goals are divided into 'Department of Chemical Engineering' and 'Department of Chemical and Biological Engineering'. The application of the educational vision of chemical engineering field is as follows. First, we expect that the vision to be a valuable, philosophical, and theoretical basis for establishing educational objectives and goals in the field of chemical engineering. Hopefully, it will be used as a general education goal for the top-level education. Second, we hope that the vision will be used to develop customized vision, customized educational purpose, and educational goals that reflect the characteristics of region, departments, graduates, and educational needs in the field of chemical engineering. Finally, we hope that these results will be the starting point to discuss the educational vision in the department of chemical engineering.

Kinetic Modeling of Simultaneous Saccharification and Fermentation for Ethanol Production Using Steam-Exploded Wood with Glucose- and Cellobiose-Fermenting Yease, Brettanomyces custersii

  • Moon, Hyun-Soo;Kim, Jun-Seok;Oh, Kyeong-Keun;Kim, Seung-Wook;Hong, Suk-In
    • Journal of Microbiology and Biotechnology
    • /
    • v.11 no.4
    • /
    • pp.598-606
    • /
    • 2001
  • A mathematical model is proposed that can depict the kinetics of simultaneous saccharification and fermentation (SSF) using steam-exploded wood(SEW) with a glucose- and cellobiose-fermenting yeast strain. Brettanomyces custersii. An expression to describe the reduction of the relative digestibility during the hydrolysis of the SEW is introduced in the hydrolysis model. The fermentation model also takes two new factors into account, that is, the effects of the inhibitory compounds present in the SEW hydrolysates on the microorganism and the fermenting ability of Brettanomyces custersii, which can use both glucose and cellobiose as carbon sources. The model equations were used to simulate the hydrolysis of the SEW, the fermentation of the SEW hydrolysates, and a batch SSF, and the results were compared with the experimental data. The model was found to be capable of representing ethanol production over a range of substrate concentrations. Accordingly, the limiting factors in ethanol production by SSF under the high concentration of the SEW were identified as the effect of inhibitory compounds present in the SEW, the enzyme deactivation, and a limitation in the digestibility based on the physical condition of the substrate.

  • PDF

Using response surface methodology and Box-Behnken design in the study of affecting factors on the dairy wastewater treatment by MEUF

  • Khosroyar, Susan;Arastehnodeh, Ali
    • Membrane and Water Treatment
    • /
    • v.9 no.5
    • /
    • pp.335-342
    • /
    • 2018
  • Micelle-Enhanced Ultrafiltration (MEUF) is a membrane separation processes that improving ultrafiltration process with the formation of micelles of the surface active agents. Surface active agents are widely used to improve membrane processes due to the ability to trap organic compounds and metals in the treatment of industrial waste water. In this study, surface active agents are used to improve micelle-enhanced ultrafiltration (MEUF) to reduce chemical oxygen demand (COD), total dissolved solid (TDS), turbidity and clogging the membrane in dairy wastewater treatment. Three important operational factors (anionic surface active agent concentration, pressure and pH) and these interactions were investigated by using response surface methodology (RSM) and Box-Behnken design. Results show that due to the concentration polarization layer and increase the number of Micelles; the anionic surface active agent concentration has a negative effect on the flux and has a positive effect on the elimination of contamination indices. pH, and the pressure have the greatest effect on flux. On the other hand, it could be stated that these percentages of separation are in the percentages range of Nano-filtration (NF). While MEUF process has higher flux than NF process. The results have been achieved at lower pressure while NF process needs high pressure, thus making MEUF is the replacement for the NF process.

Flotation of cyanobacterial particles without chemical coagulant under auto-flocculation

  • Kwak, Dong-Heui;Kim, Tae-Geum;Kim, Mi-Sug
    • Membrane and Water Treatment
    • /
    • v.9 no.6
    • /
    • pp.447-454
    • /
    • 2018
  • Although flotation techniques are often used for the removal of algal particles, the practicality of algae-harvesting technologies is limited owing to the complex and expensive facilities and equipment required for chemical coagulation. Here, we examined the feasibility of an approach to separating algal particles from water bodies without the need for chemical coagulants, depending on the condition of the algae, and to determine the optimal conditions. Using Anabaena sp., a cyanobacterium causes algal blooms in lakes, we stimulated auto-flocculation in algal particles without coagulants and conducted solid-liquid separation experiments of algal particles under various conditions. The six cultivation columns included in our analysis comprised four factors: Water temperature, light intensity, nutrients, and carbon source; auto-flocculation was induced under all treatments, with the exception of the treatment involving no limits to all factors, and algal particles were well-settled under all conditions for which auto-flocculation occurred. Meanwhile, flotation removal of auto-flocculated algal particles was attained only when nutrients were blocked after algae were grown in an optimal medium. However, no significant differences were detected between the functional groups of the extracellular polymeric substances (EPSs) of floated and settled algal particles in the FT-IR peak, which can cause attachment by collision with micro-bubbles.

The Water Quality Assessment based on Phytoplankton Community and Physico-chemical Factors of Oship-stream, Songchun-stream and Namdae-stream in Gyeongsangbukdo (경상북도 오십천, 송천천과 남대천의 환경요인과 식물플랑크톤 군집분석에 의한 수질평가)

  • Kim, Yong-Jin;Lee, Ok-Min
    • Journal of Korean Society on Water Environment
    • /
    • v.29 no.3
    • /
    • pp.428-437
    • /
    • 2013
  • Physico-chemical water quality parameters and the phytoplankton communities from 12 sites in Oship-stream, Songchunstream, and Namdae-stream, located Gyeongsangbukdo Uljin-gun, Yeongdeok-gun, and Pyeonghae-eup respectively, were investigated from April 2009 to February 2010. Oship-stream, which is an open estuary, was easily affected by ocean current compared to that of Songchun-stream and Namdae-stream. OS3 and OS4 conductivity was higher with a season average of 3,397 ${\mu}s/cm$. The streams were mesotrophic to hypertrophic. Biological oxygen demand (BOD) was about 3mg/L, which was level 2 on the water quality ratings, but a concentration of 5mg/L in April 2009 indicated increased pollution due to drought. A total of 118, 117, and 124 phytoplankton taxa were found in Oship-stream, Songchun-stream, and Namdae-stream, respectively. The apparent dominant species in the polluted waters included Cryptomonas ovata, Fragilaria construens var. venter, Oscillatoria limnetica, O. limosa, and Phormidium tenue. All of Oship-stream, SC2 and SC4 of Songchun-stream, and ND3 of Namdae-stream were eutrophic as a result of standing crop analysis. BOD was highly correlated with chlorophyll-a content(r=0.52). Phosphorus concentration and proliferation of phytoplankton were thought to most affect BOD concentration in all three streams.

Doxorubicin Productivity Improvement by the Recombinant Streptomyces peucetius with High-Copy Regulatory Genes Cultured in the Optimized Media Composition

  • PARK, HEE-SEOP;KANG, SEUNG-HOON;PARK, HYUN-JOO;KIM, EUNG-SOO
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.66-71
    • /
    • 2005
  • Doxorubicin is a clinically important anticancer polyketide compound that is typically produced by Streptomyces peucetius var. caesius. To improve doxorubicin productivity by S. peucetius, a doxorubicin pathway-specific regulatory gene, dnrI, was cloned into a high-copy-number plasmid containing a catechol promoter system. The S. peucetius containing the recombinant plasmid exhibited approximately 9.5-fold higher doxorubicin productivity compared with the wild-type S. peucetius. The doxorubicin productivity by this recombinant S. peucetius strain was further improved through the optimization of culture media composition. Based on the Fractional Factorial Design (FFD), cornstarch, $K_2HPO_4$, and $MgSO_4$ were identified to be the key factors influencing doxorubicin productivity. The Response Surface Method (RSM) results based on 20 independent culture conditions with varying amounts of key factors predicted the highest theoretical doxorubicin productivity of 11.1 mg/l with corn starch of 46.33 g/l, $K_2HPO_4$ of 4.63 g/l, and $MgSO_4$ of 9.26 g/l. The doxorubicin productivity of the recombinant S. peucetius strain with the RSM-based optimized culture condition was experimentally verified to be 11.46 mg/l, which was approximately 30.8-fold higher productivity compared with the wild-type S. peucetius without culture media optimization.

Effect of Soil Factors, Cultural Practices and Climatic Conditions on Some Chemical Components of Flue-cured Tobacco (토양환경, 재배방법 및 기상요인이 황색종 잎담배 화학성분에 미치는 영향)

  • Jeong Kee-Taeg;Kim Sang-Beom;Cho Soo-Heon;Bock Jin-Young;Lee Joung-Ryoul
    • Journal of the Korean Society of Tobacco Science
    • /
    • v.28 no.1
    • /
    • pp.17-22
    • /
    • 2006
  • This study was conducted to investigate the effect of soil, cultural practices and climatic conditions on some chemical constituents of flue-cured tobacco. Increasing the nicotine and total nitrogen contents may be useful to reduce the total sugar content of cured leaves in flue-cured tobacco. Delaying the transplanting date and increasing the soil nitrogen($N0_3-N$ and $N0_4-N$) content for 30 days after transplanting by fertilizing are desirable so as to increase the nicotine and total nitrogen contents of cured leaves. Those treatments will delay the ripeness, and elongate the duration of cultivation(day from transplanting to harvesting), and increase the fresh leaf weight. Moderate rainfall in April and May, lower relative humidity in June, and higher mean daily air temperature in June and July seem to be necessary for good leaf of flue-cured tobacco in Korea.

Process Optimization of Polyurethane Pre-polymer for Medical Application (의료용 폴리우레탄 Pre-polymer의 중합공정 최적화)

  • Hur, Kwang-Tae;Koo, Yang;Ha, Man-Kyung;Kwak, Jae-Seob
    • 한국금형공학회:학술대회논문집
    • /
    • 2008.06a
    • /
    • pp.203-208
    • /
    • 2008
  • Recently, the modern society in development and industrial growth is investing a lot of time and much effort to improvement and environment of life quality. Thus, the casting tape which uses environmentally friendly and human body friendly water hardening process Polymer is rapidly substituted for the gypsum cast product which has been plentifully used in medical treatment. Until currently, prior researches have a tendency to focusing the analysis about chemical creation expense and reaction quality rather than the issue about optimization of the process for this polymerization. In the polymerization process which has been accomplished with actual same chemical creation expense, there has been a problem which is the possibility of getting a different result. This is because the optimization of respectively control factors is not accomplished which affect at polymerization process. Therefore, this research sees the chemical qualities of casting tape Polymer, consequently selects the polymerization process which is suitable. And, by using a experimental design, this research will evaluate the affects which the respective factors have on remaining NCO and viscosity. futhermore, this research will carry out the process optimization which can get the above results.

  • PDF

Retention Factors and Resolutions of Amino Benzoic Acid Isomers with Some Ionic Liquids

  • Zheng, Jinzhu;Polyakova, Yulia;Row, Kyung-Ho
    • Biotechnology and Bioprocess Engineering:BBE
    • /
    • v.11 no.6
    • /
    • pp.477-483
    • /
    • 2006
  • Ionic liquids in the form of organic salts are being widely used as new solvent media. In this paper three positional isomers, o-amino benzoic acid, m-amino benzoic acid, and p-amino benzoic acids were separated with four different ionic liquids as mobile phase additives using high performance liquid chromatography (HPLC). The following ionic liquids were used: 1-butyl-3-methylimidazolium tetrafluoroborate ([BMIm][$BF_{4}$]), 1-ethyl-3-methylimidazolium tetrafluoroborate ([EMIm][$BF_{4}$]), 1-ethyl-3-methylimidazolium methylsulfate ([EMIm][MS]), and 1-octyl-3-methylimidazolium methylsulfate ([OMIm][MS]). The effects of the alkyl group length on the imidazolium ring and its counterion, and the concentrations of the ionic liquids on the retention factors and resolutions of amino benzoic acid isomers were tested. The results of the separations with ionic liquids as the eluents were better than those without ionic liquids. Excellent separations of the three isomers were achieved using 2.0-8.0 mM/L [OMIm][MS] and 1.0-8.0 mM/L [EMIm][MS] as the eluent modifiers.