• Title/Summary/Keyword: Chemical energetics

Search Result 59, Processing Time 0.023 seconds

A Study of Atmospheric Plasma Treatment on Surface Energetics of Carbon Fibers

  • Park, Soo-Jin;Chang, Yong-Hwan;Moon, Cheol-Whan;Suh, Dong-Hack;Im, Seung-Soon;Kim, Yeong-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.335-338
    • /
    • 2010
  • In this study, the atmospheric plasma treatment with $He/O_2$ was conducted to modify the surface chemistry of carbon fibers. The effects of plasma treatment parameters on the surface energetics of carbon fibers were experimentally investigated with respect to gas flow ratio, power intensity, and treatment time. Surface characteristics of the carbon fibers were determined by X-ray photoelectron spectroscopy (XPS), scanning electron microscope (SEM), Fourier transform infrared (FT-IR), Zeta-potential, and contact angle measurements. The results indicated that oxygen plasma treatment led to a large amount of reactive functional groups onto the fiber surface, and these groups can form together as physical intermolecular bonding to improve the surface wettability with a hydrophilic polymer matrix.

Chemical Substitution Effect on Energetic and Structural Differences between Ground and First Electronically Excited States of Thiophenoxyl Radicals

  • Yoon, Jun-Ho;Lim, Jeong Sik;Woo, Kyung Chul;Kim, Myung Soo;Kim, Sang Kyu
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.415-420
    • /
    • 2013
  • Effect of chemical substitution at the para-position of the thiophenoxyl radical has been theoretically investigated in terms of energetics, structures, charge densities and orbital shapes for the ground and first electronically excited states. It is found that the adiabatic energy gap increases when $CH_3$ or F is substituted at the para-position. This change is attributed to the stabilization of the ground state of thiophenoxyl radical through the electron-donating effect of F or $CH_3$ group as the charge or spin of the singly-occupied molecular orbital is delocalized over the entire molecule especially in the ground state whereas in the excited state it is rather localized on sulfur and little affected by chemical substitutions. Quantitative comparison of predictions based on four different quantum-mechanical calculation methods is presented.

Structure and Energetics of (C60)22+ Conformers: Quantum Chemical Studies

  • Lee, Chang-Hoon;Park, Sung-Soo;Lee, Wang-Ro;Lee, Kee-Hag
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.2
    • /
    • pp.457-460
    • /
    • 2010
  • The geometrical structures and energetics of positively doubly charged fullerene dimer $(C_{60})_2{^{2+}}$ conformers were studied using semiempirical PM3 and MNDO, Hartree-Fock (HF), and Hybrid B3LYP density functional methods. The shape of the HOMO-LUMO for the three conformers was also analyzed. The gauche conformer was the most stable of the three conformers. The anti conformer was more stable than the syn conformer.

Packages of Unified modeling for Radiative transfer, gas Energetics, and Chemistry (PUREC)

  • Lee, Seokho;Lee, Jeong-Eun
    • The Bulletin of The Korean Astronomical Society
    • /
    • v.42 no.1
    • /
    • pp.39.1-39.1
    • /
    • 2017
  • Protoplanetary disks (PPDs) are a natural consequence of star formation and play crucial roles in planet formation. Atacama Large Millimeter/submillimeter Array (ALMA) has provided sub-mm data for the PPDs with a high angular resolution and sensitivity, and it makes us enable to study PPDs in detail. We have developed Packages of Unified modeling for Radiative transfer, gas Energetics, and Chemistry (PUREC), which consists of a self-consistent thermo-chemical model and line and continuum radiative transfer models, in order to interpret and predict the ALMA observations for PPDs. In this talk, we introduce capabilities of PUREC.

  • PDF

Effect of Corona Discharge Treatment on the Dyeability of Low-density Polyethylene Film

  • Park, Soo-Jin
    • Proceedings of the Korean Fiber Society Conference
    • /
    • 2003.10a
    • /
    • pp.35-36
    • /
    • 2003
  • The purpose of this work is to investigate the surface modification of LDPE film via corona discharge treatment and subsequent graft polymerization, and their effect on the resulting dyeability is studied in terms of the surface functional groups, surface energetics, and acid-base interaction between the modified LDPE and the dyes used.

  • PDF

Molecular Dynamics Simulations of the OSS2 Model for Water and Oxonium Ion Monomers, and Protonated Water Clusters

  • Lee, Song-Hi
    • Bulletin of the Korean Chemical Society
    • /
    • v.23 no.1
    • /
    • pp.107-111
    • /
    • 2002
  • The OSS2 (Oj?me-Shavitt-Singer 2)[L. Oj?me et al., J. Chem. Phys. 109, 5547 (1998)] model for the solvated proton in water is examined for $H_2O,\;H_3O^+,\;H_5O_2^+,\;H_7O_3^+,\;and\;H_9O_4^-$ by molecular dynamics (MD) simulations. The equilibrium molecular geometries and energies obtained from MD simulations at 5.0 and 298.15 K agree very well with the optimized calculations.

Theoretical Study on Structures and Energetics of Small Water Clusters

  • Park Yeong Jae;Kang Young Kee;Yoon Byoung Jip;Jhon Mu Shik
    • Bulletin of the Korean Chemical Society
    • /
    • v.3 no.2
    • /
    • pp.50-55
    • /
    • 1982
  • A study of small water clusters composed of two to seven molecules has been performed by using the revised empirical potential function for conformational analysis (REPFCA). Various structures of clusters have been investigated and the relative probability of cluster per molecule is discussed. In general, cyclic structures of water clusters are more favorable than open structures. It is found that cyclic pentamer is the most favorable unit structure in the water cluster.

Density Functional Study on [3+2]-Dipolar Cycloaddition Reaction of the N-heterocyclic Carbene Boryl Azide with Olefins

  • Zhang, Xing-Hui;Wang, Ke-Tai;Niu, Teng;Li, Shan-Shan
    • Bulletin of the Korean Chemical Society
    • /
    • v.35 no.5
    • /
    • pp.1403-1408
    • /
    • 2014
  • The cycloaddition reactions of the N-heterocyclic carbene boryl azide with methyl acrylate, butenone, and hexafluoropropene have been investigated theoretically. Solvent effects on these reactions have been explored by calculation that included a polarizable continuum model (PCM) for the solvent (C6H6). The title reaction could produce 4- and 5-substituted 1,2,3-triazolines, respectively. The reaction systems have the higher chemical reactivity with the low barriers and could be favored. Yet the smaller differences have been found to occur in energetics, and the cycloaddition reactions occur for s-trans conformations over s-cis conformations. The calculations indicated that the cycloaddition reaction of the alkenes have certain regioselectivity.

Surface Characterization of Hydrophobically Modified MCC Using Inverse Gas Chromatography (인버스 가스 크로마토 그래피를 이용한 소수화된 MCC의 표면 특성 분석)

  • Lee, Hak-Rae;Lee, Yong-Min;Park, Il;Lee, Jin-Hee;Cho, Joong-Yeon;Han, Sin-Ho
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.34 no.3
    • /
    • pp.9-16
    • /
    • 2002
  • The adsorption characteristics and surface energetics of hydrophobically modified MCC have been investigated by the inverse gas chromatography technique at infinite dilution. The thermodynamic parameters of adsorption, ΔG, ΔH and ΔS, for n-alkanes were determined at infinite dilution. Heats of adsoption of the n-alkanes increased as the level of hydrophobic modification increased. The hydrophobically modified MCC also showed greater entropy of adsorption indicating restricted mobility of the adsorbed n-alkanes. The acid/base characteristics of the MCC were evaluated using polar probes. As the hydrophobicity of MCC increased, the basisity of the MCC decreased.

Basic Technologies for the Development of High Explosives (고폭화약 연구의 기술 분야)

  • Kim, Hyoun-Soo
    • Korean Chemical Engineering Research
    • /
    • v.44 no.5
    • /
    • pp.435-443
    • /
    • 2006
  • The objective of this paper is to provide fundamental information on the subject of high explosives not only to the explosive scientist but also to the chemical engineer. Technologies for the development of high explosives are divided into 5 areas: (1) synthesis of new energetics, (2) preparation of functional explosives, (3) formulation study of plastic bonded explosives, (4) application of high explosives to munitions, (5) demilitarization process. This paper outlines the basic technologies need to understand the high explosives.