• 제목/요약/키워드: Chemical doping

검색결과 532건 처리시간 0.023초

A Simple Device of the Dry Tetrabromophenolphthalein Ethyl Ester Reagent Strip for the Detection of Methamphetamine

  • Choi, Myung-Ja;Song, Eun-Young;Kim, Seung-Ki;Choi, Jeong-Eun;Lho, Dong-Seok;Park, Jong-Sei
    • Archives of Pharmacal Research
    • /
    • 제16권3호
    • /
    • pp.227-230
    • /
    • 1993
  • A new device to detect methamphetamine (MA), amphetamine(A) and its metabolites in urine was developed using the paper strip method and the test tube method of dry chemical reagents. The reagent containing tetrabromophenolphthalein ethyl ester (TBPE) and borax. For the TBPE paper strip method, a device was prepared with a window at each end of the reagent paper strip ; one window is for the sample application, and the other window is for the methylene chloride. The diffused sample from one window reacts with reagent in the paper and produces color at the point where it meets with methylene chloride which has diffused form the other side. A positive smaple produces as red-purple color and the negative sample a greenish color, with a detection limit of 5-10 ppm. The result can be obtained within one minute. For the TBPE test tube method which contains dry reagents, the detection limit is 5 ppm and the result can be obtaineed within 30 seconds, however the carry-on is not as convenient as the paper strip method. The performance of both methods were evlauated by comparing with the results of gas chromatography (GC) and fluorescence polarizaiton immunoassay (FPIA). The results were proven that both methods were useful as primary screening reagents to detect MA in urine and in dry powder.

  • PDF

유성 볼밀법을 이용한 탄소 도핑 가시광 활성 TiO2 광촉매 제조 및 이의 특성 평가 (Preparation of C Doped TiO2 Photocatalyst Activating to Visible Irradiation and Investigation of Its Photocatalytic Activity)

  • 여인철;강인철
    • 한국분말재료학회지
    • /
    • 제17권4호
    • /
    • pp.281-288
    • /
    • 2010
  • A carbon doped $TiO_2$ (C-$TiO_2$) photocatalyst, which shows good photocatalytic activity to Ultraviolet irradiation and visible irradiation, was successfully prepared by co-grinding of $TiO_2$ with ethanol or Activated Carbon(C), followed by heat treatment at $200^{\circ}C$ in air for 60 min. Ethanol and C were used as a representative agent of liquid and solid for carbon doping. Their influence on improving photocatalytic ability and carbon doping degree was studied with degradation of methyl orange and XPS analysis. The product prepared by co-grinding of $TiO_2$ with Ethanol had Ti-C and C-O chemical bonds and showed higher photocatalytic activity than the product prepared by co-grinding of $TiO_2$ with C, where just C-O chemical bond existed. As a result, mechanochemical route is useful to prepare a carbon doped $TiO_2$ photocatalyst activating to visible irradiation, where the solid-liquid operation is more effective than solid-solid operation to obtain a carbon doped $TiO_2$.

박형 결정질 실리콘 태양전지 제작을 위한 웨이퍼 두께에 따른 특성 연구 (Characteristics of doping process with various wafer thicknesses for thin crystalline silicon solar cell application)

  • 정경택;이희준;송희은;유권종;양오봉
    • 한국태양에너지학회:학술대회논문집
    • /
    • 한국태양에너지학회 2011년도 춘계학술발표대회 논문집
    • /
    • pp.101-104
    • /
    • 2011
  • Many studies in crystalline silicon solar cell fabrication have been focused on high efficiency and low cost. In this paper, we carried out the doping procedure by varying the silicon wafer thicknesses and sheet resistance. The silicon wafers with various thicknesses were obtained by shiny etching and texturing. The thicknesses of wafers were 100, 120, 150, and $180{\mu}m$. The emitter layer formed by $POCl_3$ doping process had sheet resistance with 40 and $80{\Omega}/sq$ for selective emitter application. This experiment indicated wafer thickness did not influence sheet resistance but lifetime was strongly effected.

  • PDF

The Comparison of Property and Visible Light Activity between Bulk and Surface Doped N-TiO2 Prepared by Sol-gel and N2-plasma Treatment

  • Hu, Shaozheng;Li, Fayun;Fan, Zhiping
    • Bulletin of the Korean Chemical Society
    • /
    • 제33권1호
    • /
    • pp.199-203
    • /
    • 2012
  • A modified sol-gel method and $N_2$-plasma treatment were used to prepare bulk and surface doped N-$TiO_2$, respectively. XRD, TEM, UV-vis spectroscopy, $N_2$ adsorption, Elemental Analyzer, Photoluminescence, and XP spectra were used to characterize the prepared $TiO_2$ samples. The N doping did not change the phase composition and particle sizes of $TiO_2$ samples, but increased the visible light absorption. The photocatalytic activities were tested in the degradation of an aqueous solution of a reactive dyestuff, methylene blue, under visible light. The photocatalytic activity of surface doped N-$TiO_2$ prepared by $N_2$-plasma was much higher than that of bulk doped N-$TiO_2$ prepared by sol-gel method. The possible mechanism for the photocatalysis was proposed.

Mn 도핑이 Fe2O3 쿨 안료의 흑색도 및 NIR 반사율에 미치는 영향 (Mn-doping Effect on the Blackness and NIR Reflectance of Fe2O3 Cool Pigments)

  • 황진수;정경열
    • 한국분말재료학회지
    • /
    • 제28권1호
    • /
    • pp.38-43
    • /
    • 2021
  • A high NIR-reflective black pigment is developed by Mn doping of Fe2O3. The pigment powders are prepared by spray pyrolysis, and the effect of the Mn concentration on the blackness and optical properties is investigated. Mn doping into the crystal lattice of α-Fe2O3 is found to effectively change the powder color from red to black, lowering the NIR reflectance compared to that of pure Fe2O3. The pigment doped with 10% Mn, i.e., Fe1.8Mn0.2O3, exhibits a black color with an optical bandgap of 1.3 eV and a Chroma value of 1.14. The NIR reflectance of the prepared Fe1.8Mn0.2O3 black pigment is 2.2 times higher than that of commercially available carbon black, and this material is proven to effectively work as a cool pigment in a temperature rise experiment under near-infrared illumination.

Mo 유연기판을 이용한 Cu2SnS3 박막 태양전지의 셀레늄 도핑 효과 (Effect of Selenium Doping on the Performance of Flexible Cu2SnS3(CTS) Thin Film Solar Cells)

  • 이인재;조은애;장준성;이병훈;이동민;강창현;문종하
    • 한국재료학회지
    • /
    • 제30권2호
    • /
    • pp.68-73
    • /
    • 2020
  • Due to its favorable optical properties, Cu2SnS3 (CTS) is a promising material for thin film solar cells. Doping, which modifies the absorber properties, is one way to improve the conversion efficiency of CTS solar cells. In this work, CTS solar cells with selenium doping were fabricated on a flexible substrate using sputtering method and the effect of doping on the properties of CTS solar cells was investigated. In XRD analysis, a shift in the CTS peaks can be observed due to the doped selenium. XRF analysis confirmed the different ratios of Cu/Sn and (S+Se)/(Cu+Sn) depending on the amount of selenium doping. Selenium doping can help to lower the chemical potential of sulfur. This effectively reduces the point defects of CTS thin films. Overall improved electrical properties were observed in the CTS solar cell with a small amount of selenium doping, and a notable conversion efficiency of 1.02 % was achieved in the CTS solar cell doped with 1 at% of selenium.

The Root Cause of the Rate Performance Improvement After Metal Doping: A Case Study of LiFePO4

  • Park, Chang-Kyoo;Park, Sung-Bin;Park, Ji-Hun;Shin, Ho-Chul;Cho, Won-Il;Jang, Ho
    • Bulletin of the Korean Chemical Society
    • /
    • 제32권3호
    • /
    • pp.921-926
    • /
    • 2011
  • This study investigates a root cause of the improved rate performance of $LiFePO_4$ after metal doping to Fesites. This is because the metal doped $LiFePO_4$/C maintains its initial capacity at higher C-rates than undoped one. Using $LiFePO_4$/C and doped $LiFe_{0.97}M_{0.03}PO_4$/C (M=$Al^{3+}$, $Cr^{3+}$, $Zr^{4+}$), which are synthesized by a mechanochemical process followed by one-step heat treatment, the Li content before and after chemical delithiation in the $LiFePO_4$/C and the binding energy are compared using atomic absorption spectroscopy (AAS) and X-ray photoelectron spectroscopy (XPS). The results from AAS and XPS indicate that the low Li content of the metal doped $LiFePO_4$/C after chemical delithiation is attributed to the low binding energy induced by weak Li-O interactions. The improved capacity retention of the doped $LiFePO_4$/C at high discharge rates is, therefore, achieved by relatively low binding energy between Li and O ions, which leads to fast Li diffusivity.