• Title/Summary/Keyword: Chemical density

Search Result 3,707, Processing Time 0.028 seconds

High-energy-density activated carbon electrode for organic electric-double-layer-capacitor using carbonized petroleum pitch

  • Choi, Poo Reum;Kim, Sang-Gil;Jung, Ji Chul;Kim, Myung-Soo
    • Carbon letters
    • /
    • v.22
    • /
    • pp.70-80
    • /
    • 2017
  • Activated carbons (ACs) have been used as electrode materials of electric double-layer capacitors (EDLC) due to their high specific surface areas (SSA), stability, and ecological advantages. In order to make high-energy-density ACs for EDLC, petroleum pitch (PP) pre-carbonized at $500-1000^{\circ}C$ in $N_2$ gas for 1 h was used as the electrode material of the EDLC after KOH activation. As the pre-carbonization temperature increased, the SSA, pore volume and gravimetric capacitance tended to decrease, but the crystallinity and electrode density tended to increase, showing a maximum volumetric capacitance at a medium carbonization temperature. Therefore, it was possible to control the crystalline structure, SSA, and pore structure of AC by changing the pre-carbonization temperature. Because the electrode density increased with increasing of the pre-carbonization temperature, the highest volumetric capacitance of 28.4 F/cc was obtained from the PP pre-carbonized at $700^{\circ}C$, exhibiting a value over 150% of that of a commercial AC (MSP-20) for EDLC. Electrochemical activation was observed from the electrodes of PP as they were pre-carbonized at high temperatures above $700^{\circ}C$ and then activated by KOH. This process was found to have a significant effect on the specific capacitance and it was demonstrated that the higher charging voltage of EDLC was, the greater the electrochemical activation effect was.

A Study on Preparation of Fast Cure and Low Density SMC (속경화·저비중 SMC 제조에 관한 연구)

  • Kim, Eun Kyoung;Lee, Youngchul;Hwang, Seok-Ho
    • Applied Chemistry for Engineering
    • /
    • v.7 no.3
    • /
    • pp.511-517
    • /
    • 1996
  • In this research, we studied curing and filler systems for preparation of fast cure SMC and low-density SMC, respectivly. Two curing systems were evaluated for fast cure SMC formulation. One is a mixed initiator system and the other is an activator system. For low-density SMC, glass micro-baloon(GMB) was used as a filler. Various SMC formulations were cured in an appropriate way, and their curing behavior and physical/mechanical properties were characterized. Curing rates were increased with increasing quantity of mixed initiator and activator, but mechanical properties were not affected. As the quantities of GMB increased, density and mechanical properties were decreased.

  • PDF

Cell Age Optimization for Hydrogen Production Induced by Sulfur Deprivation Using a Green Alga Chlamydomonas reinhardtii UTEX 90

  • KIM , JUN-PYO;KANG, CHANG-DUK;SIM, SANG-JUN;KIM, MI-SUN;PARK, TAI-HYUN;LEE, DONG-HYUN;KIM, DUK-JOON;KIM, JI-HEUNG;LEE, YOUNG-KWAN;PAK, DAE-WON
    • Journal of Microbiology and Biotechnology
    • /
    • v.15 no.1
    • /
    • pp.131-135
    • /
    • 2005
  • Under sulfur deprived conditions, PS II and photosynthetic $O_2$ evolution by Chlamydomonas reinhardtii UTEX 90 are inactivated, resulting in shift from aerobic to anaerobic condition. This is followed by hydrogen production catalyzed by hydrogenase. We hypothesized that the photosynthetic capacity and the accumulation of endogenous substrates such as starch for hydrogen production might be different according to cell age. Accordingly, we investigated (a) the relationships between hydrogen production, induction time of sulfur deprivation, increase of chlorophyll after sulfur deprivation, and residual PS II activity, and (b) the effect of initial cell density upon sulfur deprivation. The maximum production volume of hydrogen was 151 ml $H_2$/l with 0.91 g/l of cell density in the late-exponential phase. We suggest that the effects of induction time and initial cell density at sulfur deprivation on hydrogen production, up to an optimal concentration, are due to an increase of chlorophyll under sulfur deprivation.

Effect of Surfactant on the Physical Properties and Crosslink Density of Silica Filled ESBR Compounds and Carbon Black Filled Compounds

  • Hwang, Kiwon;Kim, Woong;Ahn, Byungkyu;Mun, Hyunsung;Yu, Eunho;Kim, Donghyuk;Ryu, Gyeongchan;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.53 no.2
    • /
    • pp.39-47
    • /
    • 2018
  • Styrene-butadiene rubber (SBR) is widely used in tire treads due to its excellent abrasion resistance, braking performance, and reasonable cost. Depending on the polymerization method, SBR is classified into solution-polymerized SBR (SSBR) and emulsion-polymerized SBR (ESBR). ESBR is less expensive and environmentally friendlier than SSBR because it uses water as a solvent. A higher molecular weight is also easier to obtain in ESBR, which has advantages in mechanical properties and tire performance. In ESBR polymerization, a surfactant is added to create an emulsion system with a hydrophobic monomer in the water phase. However, some amount of surfactant remains in the ESBR during coagulation, making the polymer chains in micelles clump together. As a result, it is well-known that residual surfactant adversely affects the physical properties of silica-filled ESBR compounds. However, researches about the effect of residual surfactant on the physical properties of ESBR are lacking. Therefore, in this study we compared the effects of remaining surfactant in ESBR on the mechanical properties of silica-filled and carbon black-filled compounds. The crosslinking density and filler-rubber interaction are also analyzed by using the Flory-Rehner theory and Kraus equation. In addition, the effects of surfactant on the mechanical properties and crosslinking density are compared with the effects of TDAE oil (a conventional processing aid).

Failure Mechanism and Long-Term Hydrostatic Behavior of Linear Low Density Polyethylene Tubing (선형저밀도 폴리에틸렌 튜빙의 파손 메커니즘과 장기 정수압 거동)

  • Weon, Jong-Il;Chung, Yu-Kyoung;Shin, Sei-Moon;Choi, Kil-Yeong
    • Polymer(Korea)
    • /
    • v.32 no.5
    • /
    • pp.440-445
    • /
    • 2008
  • The failure mechanism and failure morphology of linear low density polyethylene (LLDPE) tubing under hydrostatic pressure were investigated. Microscopic observations using video microscope and scanning electron microscope indicate that the failure mode is a brittle fracture including cracks propagated from inner wall to outer wall. In addition, oxidation induction time and Fourier transform infrared spectroscopy results show the presence of exothermic peak and the increase in carbonyl index on the surface of fractured LLDPE tubing, due to thermal-degradation. An accelerated life test methodology and testing system for LLDPE tubing are developed using the relationship between stresses and life characteristics by means of thermal acceleration. Statistical approaches using the Arrhenius model and Weibull distribution are implemented to estimate the long-term life time of LLDPE tubing under hydrostatic pressure. Consequently, the long-term life time of LLDPE tubing at the operating temperature of $25^{\circ}C$ could be predicted and also be analyzed.

Development of the Continuous and Instantaneous Light liquid-Heavy liquid Centrifugal Separator using Density Difference (밀도 차를 이용한 경액과 중액의 연속 순간 원심분리기 개발)

  • 김영환;윤지섭;정재후;홍동희;박기용
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2001.04a
    • /
    • pp.655-659
    • /
    • 2001
  • Resident time of the continuous and Instantaneous centrifugal separator using that separates the light and heavy liquids by use of density difference is the orptical factor that affects significantly the chemical metial extraction and the productivity in the chemical and mechanical process. In this paper, the overflow of the device is investigated under consideration of the relationships between inclination angle of liquid feeding screw and the centrifugal force. From the design of the length of a centrifugal separator, the radiuses of rotor and housing, theoretical formulation on the contact radius of separation weir is established through the experiments. From the experiments, it is identified that how much the capacity of inlet impeller and the emulsion phenomenon depend on the screw angle of inlet impeller. Also, we investigate the separation condition and the resident times that are functions of the phase ratio and density.

  • PDF

DSMC Analysis of Pressure Effect on Low-Density Nozzle Flow

  • Chung, Chan-Hong;Kim, Kyung-Hoe
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.1 no.2
    • /
    • pp.1-8
    • /
    • 2000
  • The flow in low-density plumes expanding into a region of finite pressure shows a quite different behavior from that observed in low-density plumes expanding into a vacuum. The flow structure in the plume varies depending on applied ambient and stagnation chamber conditions. In the present study, the direct simulation Monte-Carlo (DSMC) method based on molecular gas dynamics is employed in the analysis of low-density gas flows expanding through a small converging/diverging nozzle. Special attention has been paid to the effect of non-zero ambient and stagnation pressures on the flow structure which has rarely been studied using the DSMC method.

  • PDF

Effects of the Surface Chemical Properties of Silica Sols on the Retention and Drainage of Microparticles Systems

  • Min, Choon-Ki
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.32 no.1
    • /
    • pp.26-32
    • /
    • 2000
  • The impact of major surface chemical properties of silica sols on the retention and drainage performance of the silica based micrparticle system, Compozil was investigated using four different silica sols. And the effect of silica properties on the interactions with cationic starch and cationic plyacrylamide has also been identified. The surface charge density and the stability over pH of silica sols were increased by introducing aluminosilicate anions at surface. It was found that the charge density of silica sols determined the addition level necessary to attain the maximum retention and drainage. When silica sols were combined with cationic starch, the change density of the product was the critical properties and the degree of microagregation was of minor importance. In the cationic polyacrylamide system the degree of colloid structure appeared to be a more critcial property than the charge density of silica sols.

  • PDF

On the Pyrolysis of Polymers IV. Pyrolysis of Polythylene and Polypropylene (高分子物質의 熱分解에 關한 硏究 (第4報) Polyethylene 및 Polypropylene의 熱分解에 關하여)

  • Chwa-Kyung Sung;Icksam Noh;Jung Yup Kim;Sung Bong Chang
    • Journal of the Korean Chemical Society
    • /
    • v.7 no.2
    • /
    • pp.122-127
    • /
    • 1963
  • Pyrolysis fo polyethylene and polypropylene has been studied in order to clarify the mechanism of chain scission and effect of oxygen on degradation. Rate of weight decrease was measured under nitrogen and air atmosphere at constant temperature for the samples of high density polyethylene, low density polyethylene and isotactic polypropylene, and then gaseous hydrocarbons produced from pyrolysis were analysed by gas chromatography. Although there is little substantial difference between composition of hydrocarbon gases from pyrolysis of high density polyethylene and low density polyethylene except some difference in quantity of total gas produced, gas composition from polypropylene pyrolysis differs from that of polyethylene pyrolysis. Gases from pyrolysis under air contain much more unsaturated hydrocarbons than those from pyrolysis under inert gas.

  • PDF