• Title/Summary/Keyword: Chemical density

Search Result 3,707, Processing Time 0.03 seconds

A New Spin Filter for High Density Culture and Ethanol Production by Saccharomyces cerevisiae

  • Moon, Hyun-Soo;Lim, Dong-Joon;Song, Gu-Young;Kang, Hyun-Ah;Kim, Seung-Wook;Kim, Ik-Hwan;Hong, Suk-In
    • Journal of Microbiology and Biotechnology
    • /
    • v.12 no.3
    • /
    • pp.406-410
    • /
    • 2002
  • A new spin filter consisting of $50{\mu}m$ (nominal pore size) depth fitters rolled on a stainless steel grid was developed, using Saccharomyces cerevisiae as a model suspension cell to evaluate the spin filter performance. In a 1.8-1 fermentor with a rotation speed of 300 rpm and perfusion rate of 4 ml/min, a cell concentration of 49 g/l and ethanol concentration of 45 g/l from 100 g/l glucose could be obtained in a perfusion culture. The major mechanisms for cell separation used by the large-pore spin filter appeared to be centrifugal force and pivotal movement of the cells in the spin filter.

Fabrication of Nickel Oxide Thin Film for Lithium Based Electrolyte by Sol-Gel Method and Electrochromic Properties in Lithium Based Electrolyte (Sol-Gel법을 통한 리튬 기반 전해질에 적합한 니켈 산화물 박막의 제조와 리튬 기반 전해질에서의 전기변색 특성)

  • Park, Sun-Ha;Yoo, Sung-Jong;Lim, Ju-Wan;Yun, Sung-Uk;Cha, In-Young;Sung, Yung-Eun
    • Journal of the Korean Electrochemical Society
    • /
    • v.12 no.3
    • /
    • pp.251-257
    • /
    • 2009
  • In this study, we fabricated nickel oxide thin film for lithium based electrolyte using sol-gel method. This film was deposited by dip-coating method with mixed solvent of DameH (N,N-dimethylaminoethanol) and DI water. As changing the ratio between DmaeH and DI water, nickel oxide thin film was presented in different charge density and optical transmittance because they were shown various thickness. It was accounted for changing viscosity and density by the ratio of DmaeH and DI water. The thin film synthesized with 1 : 1 ratio of DmaeH and DI water was expressed best electrochromic performance in lithium based electrolyte, because of thick thickness but porous structures.

Dynamics of shearing force and its correlations with chemical compositions and in vitro dry matter digestibility of stylo (Stylosanthes guianensis) stem

  • Zi, Xuejuan;Li, Mao;Zhou, Hanlin;Tang, Jun;Cai, Yimin
    • Asian-Australasian Journal of Animal Sciences
    • /
    • v.30 no.12
    • /
    • pp.1718-1723
    • /
    • 2017
  • Objective: The study explored the dynamics of shearing force and its correlation with chemical compositions and in vitro dry matter digestibility (IVDMD) of stylo. Methods: The shearing force, diameter, linear density, chemical composition, and IVDMD of different height stylo stem were investigated. Linear regression analysis was done to determine the relationships between the shearing force and cut height, diameter, chemical composition, or IVDMD. Results: The results showed that shearing force of stylo stem increased with plant height increasing and the crude protein (CP) content and IVDMD decreased but fiber content increased over time, resulting in decreased forage value. In addition, tall stem had greater shearing force than short stem. Moreover, shearing force is positively correlated with stem diameter, linear density and fiber fraction, but negatively correlated with CP content and IVDMD. Conclusion: Overall, shearing force is an indicator more direct, easier and faster to measure than chemical composition and digestibility for evaluation of forage nutritive value related to animal performance. Therefore, it can be used to evaluate the nutritive value of stylo.

A Density Functional Study of Furofuran Polymers as Potential Materials for Polymer Solar Cells

  • Xie, Xiao-Hua;Shen, Wei;He, Rong-Xing;Li, Ming
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.10
    • /
    • pp.2995-3004
    • /
    • 2013
  • The structural, electronic, and optical properties of poly(3-hexylthiophene) (P3HT) have been comprehensively studied by density functional theory (DFT) to rationalize the experimentally observed properties. Rather, we employed periodic boundary conditions (PBC) method to simulate the polymer block, and calculated effective charge mass from the band structure calculation for describing charge transport properties. The simulated results of P3HT are consistent with the experimental results in band gaps, absorption spectra, and effective charge mass. Based on the same calculated methods as P3HT, a series of polymers have been designed on the basis of the two types of building blocks, furofurans and furofurans substituted with cyano (CN) groups, to investigate suitable polymers toward polymer solar cell (PSC) materials. The calculated results reveal that the polymers substituted with CN groups have good structural stability, low-lying FMO energy levels, wide absorption spectra, and smaller effective masses, which are due to their good rigidity and conjugation in comparison with P3HT. Besides, the insertion of CN groups improves the performance of PSC. Synthetically, the designed polymers PFF1 and PFF2 are the champion candidates toward PSC relative to P3HT.

Effect of Molecular Weight of Epoxidized Liquid Isoprene Rubber as a Processing aid on the Vulcanizate Structure of Silica Filled NR Compounds

  • Ryu, Gyeongchan;Kim, Donghyuk;Song, Sanghoon;Hwang, Kiwon;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.56 no.4
    • /
    • pp.223-233
    • /
    • 2021
  • In this study, epoxidized liquid isoprene rubber (E-LqIR) was used as a processing aid in a silica-filled natural rubber compound to improve the fuel efficiency, abrasion resistance, and oil migration problems of truck and bus radial tire tread. The wear resistance, fuel efficiency, and extraction resistance of the compound were evaluated according to the molecular weight of E-LqIR. Results of the evaluation showed that the E-LqIR compound had a lower chemical crosslink density than that of a treated distillate aromatic extract (TDAE) oil compound because of the sulfur consumption of E-LqIR. However, the filler-rubber interaction improved because of the reaction of E-LqIR with silica and crosslink with the base rubber by sulfur. As the molecular weight of E-LqIR increased, crosslink with sulfur was facilitated, and the filler-rubber interaction improved, resulting in improved abrasion resistance. The fuel efficiency performance of the E-LqIR compound was poorer than that of the TDAE oil compound because of the low chemical crosslink density and hysteresis loss at the free chain end of E-LqIR. However, the fuel efficiency performance improved as the molecular weight of E-LqIR increased.

Effect of Current Density on Ion Conductivity of Membrane in Proton Exchange Membrane (고분자전해질 연료전지에서 고분자막의 이온전도도에 미치는 전류밀도의 영향)

  • Hwang, Byungchan;Oh, Sohyung;Lee, Daewoong;Chung, Hoi-Bum;You, Seung-Eul;Ku, Young-Mo;Na, Il-Chae;Lee, Jung-Hoon;Park, Kwonpil
    • Korean Chemical Engineering Research
    • /
    • v.56 no.1
    • /
    • pp.1-5
    • /
    • 2018
  • In this work, we study the ion conductivity by analyzing the impedance to the high current density range that the PEMFC (Proton Exchange Membrane Fuel Cell) is actually operated. The effect of GDL (Gas Diffusion Layer)presence on impedance was investigated indirectly by measuring hydrogen permeability. When the RH (Relative Humidity)was higher than 60% in the low current range (< $80mA/cm^2$), the moisture content of the polymer membrane was sufficient and the ion conductivity of the membrane was not influenced by the current change. However, when RH was low, ion conductivity increased due to water production as current density increased. The ion conductivity of the membrane obtained by HFR (High Frequency Resistance) in the high current region ($100{\sim}800mA/cm^2$)was compared with the measured value and simulated value. At RH 100%, both experimental and simulated values showed constant ion conductivity without being influenced by current change. At 30~70% of RH, the ionic conductivity increased with increasing current density and tended to be constant.

Effect of Current Density on Nickel Surface Treatment Process (니켈 표면처리공정에서 전류밀도 효과분석)

  • Kim, Yong-Woon;Joeng, Koo-Hyung;Hong, In-Kwon
    • Applied Chemistry for Engineering
    • /
    • v.19 no.2
    • /
    • pp.228-235
    • /
    • 2008
  • Nickel plating thickness increased with the electric current density, and the augmentation was more thick in $6{\sim}10A/dm^2$ than low current. Hull-cell analysis was tested to evaluate the current density. Optimum thickness was obtained at a temperature of $60^{\circ}C$, and the pH fluctuation of 3.5~4.0. Over the Nickel ion concentration of 300 g/L, plating thickness increased with the current density. The rate of decrease in nickel ion concentration was increased with the current density. The quantity of plating electro-deposition was increased at the anode surface, which was correlated with the increase of plating thickness. The plating thickness was increased because of the quick plating speed. However, the condition of the plating surface becomes irregular and the minuteness of nickel plating layer was reduced with the plating rate. After the corrosion test of 25 h, it was resulted in that maintaining low electric current density is desirable for the excellent corrosion resistance in lustered nickel plating. According to the program simulation, the thickness of diffusion layer was increased and the concentration of anode surface was lowered for the higher current densities. The concentration profile showed the regular distribution at low electric current density. The field plating process was controlled by the electric current density and the plating thickness instead of plating time for the productivity. The surface physical property of plating structure or corrosion resistance was excellent in the case of low electric current density.

Introduction to European Standard Methods for Physical and Chemical Analysis of Horticultural Substrates (원예용 배지의 물리·화학성 분석을 위한 유럽의 표준방법)

  • Kim, Kye-Hoon;Kang, Ji-Young
    • Horticultural Science & Technology
    • /
    • v.19 no.2
    • /
    • pp.179-185
    • /
    • 2001
  • Throughout the world, physical and chemical analyses of horticultural substrates are carried out in many different ways at the different laboratories. In Europe, standardization in properties and analytical methods of horticultural substrates has been a topic over the last decades. As a result, the CEN methods as European standard methods for the physical and chemical analyses were introduced and the final draft was reported in 1999 by CEN(Committee for European Standardization). Dry matter and moisture content are analyzed after drying samples at $103^{\circ}C$. Laboratory compacted bulk density is analyzed by determining the weight of sample compacted in the test cylinder with constant volume. Dry bulk density, particle density, total pore space, water volume, air volume and volume shrinkage are determined by saturating, draining and drying the sample using double rings and a sand suction table. pH and EC are analyzed by 1:5(sample:distilled water) extraction method on the basis of volume. Organic matter and ash content are determined after drying and combusting the samples. Now, CEN methods are being regarded almost as European standard methods. Further study needs to be carried out for universal applicability of the CEN methods to all the substrates.

  • PDF