• Title/Summary/Keyword: Chemical decontamination waste

Search Result 56, Processing Time 0.029 seconds

Research and Development for Decontamination System of Spent Resin in Hanbit Nuclear Power Plant (한빛원전 폐수지 제염공정 개발연구)

  • Sung, Gi Hong
    • Journal of Radiation Industry
    • /
    • v.9 no.4
    • /
    • pp.217-221
    • /
    • 2015
  • When reactor coolant leaks occur due to cracks of a steam generator's tube, radioactive materials contained in the primary cooling water in nuclear power plant are forced out toward the secondary systems. At this time the secondary water purification resin in the ion exchange resin tower of the steam generator blowdown system is contaminated by the radioactivity of the leaked radioactive materials, so we pack this in special containers and store temporarily because we could not dispose it by ourselves. If steam generator tube leakage occurs, it produces contaminated spent resins annually about 5,000~7,000 liters. This may increase the amount of nuclear waste productions, a disposal working cost and a unit price of generating electricity in the plant. For this reasons, it is required to develop a decontamination process technique for reducing the radioactive level of these resins enough to handle by the self-disposal method. In this research, First, Investigated the structure and properties of the ion exchange resin used in a steam generator blowdown system. Second, Checked for a occurrence status of contaminated spent resin and a disposal technology. Third, identified the chemical characteristics of the waste radionuclides of the spent resin, and examined ionic bonding and separation mechanism of radioactive nuclear species and a spent resin. Finally, we carried out the decontamination experiment using chemicals, ultrasound, microbubbles, supercritical carbon dioxide to process these spent resin. In the case of the spent resin decontamination method using chemicals, the higher the concentration of the drug decontamination efficiency was higher. In the ultrasound method, foreign matter of the spent resin was removed and was found that the level of radioactivity is below of the MDA. In the microbubbles method, we found that the concentration of the radioactivity decreased after the experiment, so it can be used to the decontamination process of the spent resin. In supercritical carbon dioxide method, we found that it also had a high decontamination efficiency. According to the results of these experiments, almost all decontamination method had a high efficiency, but considering the amounts of the secondary waste productions and work environment of the nuclear power plant, we judged the ultrasound and supercritical carbon dioxide method are suitable for application to the plant and we established the plant applicable decontamination process system on the basis of these two methods.

Ions Removal of Contaminated Water with Radioactive Ions by Reverse Osmosis Membrane Process (방사성이온으로 오염된 물의 역삼투막공정을 이용한 이온제거)

  • Shin, Do Hyoung;Cheong, Seong Ihl;Rhim, Ji Won
    • Membrane Journal
    • /
    • v.26 no.5
    • /
    • pp.401-406
    • /
    • 2016
  • In this study, we have investigated the removal of the low level radioactive ions of Cs and I in water by the reverse osmosis (RO) process. The two RO modules produced in domestic region and the waste RO module after the cleaning process were selected. Then we compared removal performance of both Cs and I. The experiments are conducted by varying the concentration of feed, the pressure. As a results, it was confirmed that all three modules are higher I decontamination factor than Cs. And particularly, for the cleaned RO module, its decontamination factor of I was 1140. Since the results at low pressure condition were better than that at high pressure conditions, the use of the direct installation of RO modules on the tap water might be possible. In addition, it was confirmed that the waste RO module after cleaning process using EDTA, SBS and NaOH, increased the decontamination performance better than before cleaning, in particular, the recovery ratio after cleaning was 6.3% higher.

Decomposition of Fe-EDTA in Nuclear Waste Water by using Underwater discharge Plasma

  • Kim, Jin-Kil;Lee, Han-Yong;Kang, Duk-Won;Uhm, Han-Sup
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.06a
    • /
    • pp.336-336
    • /
    • 2004
  • EDTA contained in decontamination wastes can cause complexation of radioactive captions resulting from its various treatment process such as chemical precipitation, and ion exchange etc. It might also import for elevated teachability and higher mobility of cationic contaminants from conditioned wastes such as waste immobilized in cement or other matrices. Therefore, various cheated or unchlelated EDTAS must be treated to environmentally safe materials.(omitted)

  • PDF

CHEMICAL DECONTAMINATION OF SOIL CONTAMINATED WITH Cs-137

  • H. J. Won;Kim, G. N.;C. H. Jung;Park, W. K.;Kim, M. G.;W. Z. Oh;Park, J. H.
    • Proceedings of the Korean Radioactive Waste Society Conference
    • /
    • 2004.02a
    • /
    • pp.83-95
    • /
    • 2004
  • The removal efficiency of several washing agents on the $Cs^+$ ion was investigated. Leaching of $Cs^+$ ion from the soil surface by washing agents is affected by the exchange capability of the washing solution. Reuse tests of the effective soil washing agents such as $BaCl_2$, NaOH, citric acid+ $HNO_3$ and oxalic acid were performed. NaOH, citric acid + $HNO_3$ and oxalic acid solutions can be reused after passing through the ion exchange column. Among the tested solutions, both of citric acid+ $HNO_3$ and oxalic acid were effective for the decontamination of TRIGA research reactor soil. The radioactivity of soils can be reduced to a release level by the successive application.

  • PDF

토양 제염에 있어서 magnetite 용해 거동 연구

  • 원휘준;김민길;김계남;박진호;오원진
    • Proceedings of the Korean Society of Soil and Groundwater Environment Conference
    • /
    • 2003.04a
    • /
    • pp.393-396
    • /
    • 2003
  • Soil contains the several kinds of metal oxides. Magnetite in soil may contribute the generation of secondary waste during the decontamination of soil by citric acid. Dissolution of magnetite powders by citric acid was investigated in the pH range between 2.0 and 5.0. The dissolution behaviour of magnetite was well described by the equation, A[1 - $e^{-B(x-c)}$]. The parameters of the equation were optimized by the iteration method, and the physical meaning of each parameter was explained. Concentration of each of the dissociated chemical species of citric acid was calculated using the ionization constants. The dissolution reaction was explained by the concentration of the dissociated chemical species of citric acid.d.

  • PDF