• Title/Summary/Keyword: Chemical coprecipitation method

Search Result 53, Processing Time 0.02 seconds

Simultaneous Preconcentration and Determination of Trace Elements in Water Samples by Coprecipitation-Flotation with Lanthanum Hydroxide $[La(OH)_3]$

  • 김영상;김기찬
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.7
    • /
    • pp.582-588
    • /
    • 1995
  • The preconcentration and determination of trace Cd(Ⅱ), Cu(Ⅱ), Pb(Ⅱ), Mn(Ⅱ) and Zn(Ⅱ) in water samples were studied by the precipitate flotation using La(OH)3 as a coprecipitant. The analytes were quantitatively coprecipitated by adding 3.0 mL of 0.1 M La(Ⅲ) solution in a 1,000 mL water sample and adjusting the pH to 9.5 with NaOH solution. After the addition of the 1:8 mixed surfactant solution of each 0.1% sodium oleate and sodium lauryl sulfate, the solution was stirred with a magnetic stirrer for 10 minutes. The precipitates were floated to the surface by bubbling with nitrogen gas and collected in a small sampling bottle. The precipitates were dissolved in nitric acid and then the solutions were diluted to 25.00 mL with a deionized water. The analytes were determined by flame atomic absorption spectrometry. This procedure was applied to the waste water analysis. This technique was simple, convenient and especially rapid for the analysis of a large volume of sample. And also, from the recoveries of better than 92% which were obtained from real samples, this method could be judged to be applicable to the preconcentration and quantitative determination of trace elements in water samples.

Solid-State Ball-Mill Synthesis of Prussian Blue from Fe(II) and Cyanide Ions and the Influence of Reactants Ratio on the Products at Room Temperature

  • Youngjin Jeon
    • Journal of the Korean Chemical Society
    • /
    • v.68 no.2
    • /
    • pp.82-86
    • /
    • 2024
  • This paper presents the solid-state synthesis of insoluble Prussian blue (Fe4[Fe(CN)6]3·xH2O, PB) in a ball mill, utilizing the fundamental components of PB. Solid-state synthesis offers several advantages, such as being solvent-free, quantitative, and easily scalable for industrial production. Traditionally, the solid-state synthesis of PB has been limited to the reaction between iron(II/III) ions and hexacyanoferrate(II/III) complex ions, essentially an extension of the solution-based coprecipitation method to solid-state reaction. Taking a bottom-up approach, a reaction is designed where the reactants consist of the basic building blocks of PB: Fe2+ ions and CN- ions. The reaction, with a molar ratio of Fe2+ and CN- corresponding to 1:2.8, yields PB, while a ratio of 1:6.6 results in a mixture of potassium hexacyanoferrate(II) (K4Fe(CN)6), potassium chloride (KCl), and potassium cyanide (KCN). This synthetic approach holds promise for environmentally friendly methods to synthesize multimetallic PB with maximum entropy in nearly quantitative yield.

Self-Assembly and Photopolymerization of Diacetylene Molecules on Surface of Magnetite Nanoparticles

  • Vinod, T.P.;Chang, Ji-Hoon;Kim, Jin-Kwon;Rhee, Seog-Woo
    • Bulletin of the Korean Chemical Society
    • /
    • v.29 no.4
    • /
    • pp.799-804
    • /
    • 2008
  • An amphiphilic diacetylene compound was deposited on the surface of nano sized magnetite particles ($Fe_3O_4$) using a self-assembly method. The diacetylene molecular assembly formed on the surface of nanoparticle was subjected to photopolymerization. This resulted in the formation of a polymeric assembly on the surface of the nanoparticles in which the adjacent diacetylene molecules were connected through conjugated covalent networks. The presence of immobilized polymer species on the surface of nanoparticles is expected to protect them from agglomeration and ripening, thereby stabilizing their physical properties. In this work, $Fe_3O_4$ nanoparticles were prepared by chemical coprecipitation method and the diacetylene molecule 10,12- pentacosadiynoic acid (PCDA) was anchored to the surface of $Fe_3O_4$ nanoparticles through its carboxylate head group. Irradiation of UV light on the nanoparticles containing immobilized diacetylenes resulted in the formation of a polymeric assembly. Presence of diacetylene molecules on the surface of nanoparticles was confirmed by X-ray photoelectron spectroscopy and FT-IR measurements. Photopolymerization of the diacetylene assembly was detected by UV-Visible spectroscopy. Magnetic properties of the nanoparticles coated with polymeric assembly were investigated with SQUID and magnetic hysteresis showed superparamagnetic behaviors. The results put forward a simple and effective method for achieving polymer coating on the surface of magnetic nanoparticle.

The Treatment of Heavy Metal-cyanide Complexes Wastewater by $Zn^{+2}/Fe^{+2}$ Ion and Coprecipitation in Practical Plant(I) (아연백법 및 공침공정을 이용한 복합 중금속-시안착염 폐수의 현장처리(I))

  • Lee, Jong-Cheul;Kang, Ik-Joong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.29 no.12
    • /
    • pp.1381-1389
    • /
    • 2007
  • Wastewater discharged by industrial activities of metal finishing and electroplating units is often contaminated by a variety of toxic or otherwise harmful substances which have a negative effects on the water environment. The treatment method of heavy metal-cyanide complexes wastewater by alkaline chlorination have already well-known($1^{st}$ Oxidation: pH 10, reaction time 30 min, ORP 350 mV, $2^{nd}$ Oxidation: ORP 650 mV). In this case, the efficiency for the removal of ferro/ferri cyanide by this general alkaline chlorination is very high as 99%. But the permissible limit of Korean waste-water discharge couldn't be satisfied. The initial concentration of cyanide was 374 mg/L(the Korean permissible limit of cyanide is 1.0 mg/L max.). So a particular focus was given to the treatment of heavy metal-cyanide complexes wastewater by $Zn^{+2}/Fe^{+2}$ ion and coprecipitation after alkaline chlorination. And we could meet the Korean permissible limit of cyanide(the final concentration of cyanide: 0.30 mg/L) by $Zn^{+2}/Fe^{+2}$ ion and coprecipitation(reaction time: 30 min, pH: 8.0, rpm: 240). The removal of Chromium ion by reduction(pH: 2.0 max, ORP: 250 mV) and the precipitation of metal hydroxide(pH: 9.5) is treated as 99% of removal efficiency. The removal of Copper and Nickel ion has been treated by $Na_2S$ coagulation-flocculation as 99% min of the efficiency(pH: $9.09\sim10.0$, dosage of $Na_2S:0.5\sim3.0$ mol). It is important to note that the removal of ferro/ferri cyanide of heavy metal-cyanide complexes wastewater should be employed by $Zn^{+2}/Fe^{+2}$ ion and coprecipitation as well as the alkaline chlorination for the Korean permissible limit of waste-water discharge.

NiSO4 Supported on FeO-promoted ZrO2 Catalyst for Ethylene Dimerization

  • Sohn, Jong-Rack;Kim, Young-Tae;Shin, Dong-Cheol
    • Bulletin of the Korean Chemical Society
    • /
    • v.26 no.11
    • /
    • pp.1749-1756
    • /
    • 2005
  • The $NiSO_4$ supported on FeO-promoted $ZrO_2$ catalysts were prepared by the impregnation method. FeOpromoted $ZrO_2$ was prepared by the coprecipitation method using a mixed aqueous solution of zirconium oxychloride and iron nitrate solution followed by adding an aqueous ammonia solution. The addition of nickel sulfate (or FeO) to $ZrO_2$ shifted the phase transition of $ZrO_2$ (from amorphous to tetragonal) to higher temperatures because of the interaction between nickel sulfate (or FeO) and $ZrO_2$. 10-$NiSO_4$/5-FeO-$ZrO_2$ containing 10 wt % $NiSO_4$ and 5 mol % FeO, and calcined at 500 ${^{\circ}C}$ exhibited a maximum catalytic activity for ethylene dimerization. $NiSO_4$/FeO-$ZrO_2$ catalysts was very effective for ethylene dimerization even at room temperature, but FeO-$ZrO_2$ without $NiSO_4$ did not exhibit any catalytic activity at all. The catalytic activities were correlated with the acidity of catalysts measured by the ammonia chemisorption method. The addition of FeO up to 5 mol % enhanced the acidity, surface area, thermal property, and catalytic activities of catalysts gradually, due to the interaction between FeO and $ZrO_2$ and due to consequent formation of Fe-O-Zr bond.

CeO2-Promoted Highly Active Catalyst, NiSO4/CeO2-ZrO2 for Ethylene Dimerization

  • Pae, Young-Il;Shin, Dong-Cheol;Sohn, Jong-Rack
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.12
    • /
    • pp.1989-1996
    • /
    • 2006
  • The $NiSO_4/CeO_2-ZrO_2 $catalysts containing different nickel sulfate and $CeO_2$ contents were prepared by the impregnation method, where support, $CeO_2-ZrO_2$was prepared by the coprecipitation method using a mixed aqueous solution of zirconium oxychloride and cerium nitrate solution followed by adding an aqueous ammonia solution. No diffraction line of nickel sulfate was observed up to 20 wt %, indicating good dispersion of nickel sulfate on the surface of $CeO_2-ZrO_2$. The addition of nickel sulfate (or $CeO_2$) to $ZrO_2$ shifted the phase transition of $ZrO_2$ from amorphous to tetragonal to higher temperatures because of the interaction between nickel sulfate (or $CeO_2$) and $ZrO_2$. A catalyst (10-$NiSO_4/1-CeO_2-ZrO_2$) containing 10 wt % $NiSO_4$ and 1 mole % $CeO_2$, and calcined at $600{^{\circ}C}$ exhibited a maximum catalytic activity for ethylene dimerization. The catalytic activities were correlated with the acidity of catalysts measured by the ammonia chemisorption method. The role of $CeO_2$was to form a thermally stable solid solution with zirconia and consequently to give high surface area, thermal stability and acidity of the sample.

The Treatment of Heavy Metal-cyanide Complexes Wastewater by Zn$^{+2}$/Fe$^{+2}$ Ion and Coprecipitation in Practical Plant (II) (아연백법 및 공침공정을 이용한 복합 중금속-시안착염 폐수의 현장처리(II))

  • Lee, Jong-Cheul;Lee, Young-Man;Kang, Ik-Joong
    • Journal of Korean Society of Environmental Engineers
    • /
    • v.30 no.5
    • /
    • pp.524-533
    • /
    • 2008
  • Industrial wastewater generated in the electroplating and metal finishing industries typically contain toxic free and complex metal cyanide with various heavy metals. Alkaline chlorination, the normal treatment method destroys only free cyanide, not complex metal cyanide. A novel treatment method has been developed which destroys both free and complex metal cyanide as compared with Practical Plant(I). Prior to the removal of complex metal cyanide by Fe/Zn coprecipitation and removal of others(Cu, Ni), Chromium is reduced from the hexavalent to the trivalent form by Sodium bisulfite(NaHSO$_3$), followed by alkaline-chlorination for the cyanide destruction. The maximum removal efficiency of chromium by reduction was found to be 99.92% under pH 2.0, ORP 250 mV for 0.5 hours. The removal efficiency of complex metal cyanide was max. 98.24%(residual CN: 4.50 mg/L) in pH 9.5, 240 rpm with 3.0 $\times$ 10$^{-4}$ mol of FeSO$_4$/ZnCl$_2$ for 0.5 hours. The removal efficiency of Cu, Ni using both hydroxide and sulfide precipitation was found to be max. 99.9% as Cu in 3.0 mol of Na$_2$S and 93.86% as Ni in 4.0 mol of Na$_2$S under pH 9.0$\sim$10.0, 240 rpm for 0.5 hours. The concentration of residual CN by alkaline-chlorination was 0.21 mg/L(removal efficiencies: 95.33%) under the following conditions; 1st Oxidation : pH 10.0, ORP 350 mV, reaction time 0.5 hours, 2nd Oxidation : pH 8.0, ORP 650 mV, reaction time 0.5 hours. It is important to note that the removal of free and complex metal cyanide from the electroplating wastewater should be employed by chromium reduction, Fe/Zn coprecipitation and, sulfide precipitation, followed by alkaline-chlorination for the Korean permissible limit of wastewater discharge, where the better results could be found as compared to the preceding paper as indicated in practical treatment(I).

Electrical Properties of $(Ba,Sr)_{1-x}Y_xTiO_3$ with Variation of Yttrium Content (이트륨 혼입량 변화에 따른 $(Ba,Sr)_{1-x}Y_xTiO_3$의 전기적 특성)

  • Noh, Taeyong;Sung, Hyun Je;Kim, Seungwon;Lee, Chul
    • Journal of the Korean Chemical Society
    • /
    • v.39 no.10
    • /
    • pp.806-811
    • /
    • 1995
  • The electrical properties for $(Ba,Sr)_{1-x}Y_xTiO_3$(x=0.001∼0.009, BSYT) with a positive temperature coefficient of resistivity(PTCR) effect were investigated. The BSYT powder was prepared by oxalate coprecipitation method. It was found that the large PTCR effect was appeared up to 0.3 mol% and decreased above 0.5 mol% of the yttrium concentration. The plot of temperature vs. $1{\varepsilon}$m(T) above Curie temperature($T_c$) was agreed with Curie-Weiss law. The potential barrier calculated from measured resistivity and dielectric constant of specimens was high up to 0.3 mol% and reduced above 0.5 mol% of yttrium concentration as the curve of PTCR effect.

  • PDF

Effects of Composition on Magnetic Hyperfine Field of Acicular Fe-Co Alloy Particles (침상형 Fe-Co 합금입자에서 조성이 초미세자기장에 미치는 효과)

  • 박재윤;박용환
    • Journal of the Korean Magnetics Society
    • /
    • v.8 no.1
    • /
    • pp.1-5
    • /
    • 1998
  • Acicular Fe-Co alloy particles are one of the candidates for high-density magnetic recording media. We examined the effects of Co additions on the magnetic properties of Fe-Co alloy particles by using M$\'{o}$ssbauer spectroscopy, TEM, and X-ray diffraction. Acicular $Fe_n$Co (n=5, 4, 3, 2) alloy particles coated with silica, were prepared by a chemical coprecipitation method and subsequent H $_2$ reduction. The crystal structure was found to be cubic in all n ranges. The lattice constant $a_0$ decreases with increasing Co contents. Analysis of $^{57}Fe$ M\'{o}$ssbauer effect data in terms of the local configurations of Co atoms has permitted the influence of magnetic hyperfine interactions to be monitored.

  • PDF

A Study on the Optical Properties of γ-Fe2O3 Nano Particles (γ-Fe2O3 nano 입자의 광학적 특성에 관한 연구)

  • Lee, Kwon-Jai;An, Jeung-Hee;Shin, Jae-Soo;Kim, Chang-Man;Ozaki, Hajime;Koh, Jae-Gui
    • Korean Journal of Materials Research
    • /
    • v.16 no.12
    • /
    • pp.739-742
    • /
    • 2006
  • The ${\gamma}-Fe_2O_3$ nano particles in the size range of $5{\sim}30$ nm were prepared by a chemical coprecipitation method. The nano particles were coated with 2nd surfactants for obtaining the water-based. The size effect of ${\gamma}-Fe_2O_3$ nano particles for the ultraviolet protection was investigated. The variation of the UV-Vis transmittance spectra as a function of wavelength for a ${\gamma}-Fe_2O_3$ nano particles were showed red-shifted increase with the particle size. The protective effects of UVA onset at near 469, 494, 591 nm for a particle size of 8.7, 9.1 and 12 nm. It is shown that the ${\gamma}-Fe_2O_3$ nano particles was good materials for protect of UV.