• Title/Summary/Keyword: Chemical cooking

Search Result 325, Processing Time 0.026 seconds

Analysis of Disinfection Practices in Foodservice Operations According to the Application of Hazard Analysis and Critical Control Point (식품안전관리인증기준 적용 여부에 따른 급식시설의 소독 실태 분석)

  • Park, Min-Seo;Lee, Hye-Yeon;Bae, Hyun-Joo
    • Journal of the FoodService Safety
    • /
    • v.2 no.2
    • /
    • pp.103-110
    • /
    • 2021
  • This study was conducted to compare and evaluate the difference in washing and disinfection when the Hazard Analysis and Critical Control Point (HACCP) protocol was applied to foodservice operations. The results of the survey were as follows: Among the 116 foodservice operations surveyed, 67.2% were HACCP-compliant and 32.8% were not HACCP-compliant. Also, 62.9% served meals once daily, and 79.3% conducted food safety education once a month. Compared to HACCP non-compliant foodservice operations, the disinfection performance of HACCP-compliant operations was significantly better concerning worktables (p<0.001), food inspection tables (p<0.001), preparation tables for distribution (p<0.01), serving tables (p<0.01), overflow and trenches(p<0.05), sinks (p<0.05), and insect attracting lamps (p<0.01). Similarly, the disinfection performance of HACCP-compliant foodservice operations was significantly better for 18 cooking utensils and personal tools such as food slicers (p<0.001), multiple cooking machines (p<0.05), tray carts (p<0.001), stainless steel tools (p<0.001), rubber gloves (p<0.05). Worktables (45.1%), serving tables (29.6%), sinks (37.0%), and scales (21.6%) were most often disinfected 'at the end of each task', while food inspection tables (36.5%), food preparation tables for distribution (31.2%), dish machines (34.2%), overflow and trenches (25.7%), and floors (25.8%) were most often disinfected 'once a day'. All cooking utensils were most often disinfected 'at the end of each task'. 'Chemical disinfection' was most frequently used in all foodservice facilities. To improve the food safety management of foodservice operations, it is necessary to apply the HACCP protocol and comply with the washing and disinfection manual.

A Study of Optimum Conditions in Preparing Gruel with Black Bean Germ Sprout Source (검정콩의 발아물을 이용한 죽 제조의 최적화 조건에 관한 연구)

  • Lee Hye-Jeong;Pak Hee-Ok;Lee Sook-Young
    • The Korean Journal of Food And Nutrition
    • /
    • v.18 no.4
    • /
    • pp.287-294
    • /
    • 2005
  • Three different gruels; $100\%$ rice, $70\%$ rice and $30\%$ sprouted black bean with sprout, and $100\%$ rice and $70\%$ sprouted black bean, were prepared. Organoleptic, chemical and rheological properties were compared according to the heating time and the quantity of water. Regarding to the the rheological properties, the gruel with $30\%$ rice and $70\%$ sprouted black bean with sprout revealed the lowest level of solidity and the highest level of viscosity among these three kinds of gruels. The chemical properties; pH, total sugar content and amylose content were similar each other. In terms of organoleptic properties, the best gruel was made with $30\%$ rice and $70\%$ sprouted black bean with sprout. In addition, the best cooking condition was found that 9 times of water to the weight of rice and sprouted black bean with sprout, was used follows by 40 minutes' heating.

Optimization of Waste Cooking Oil-based Biodiesel Production Process Using Central Composite Design Model (중심합성계획모델을 이용한 폐식용유 원료 바이오디젤 제조공정의 최적화)

  • Hong, Seheum;Lee, Won Jae;Lee, Seung Bum
    • Applied Chemistry for Engineering
    • /
    • v.28 no.5
    • /
    • pp.559-564
    • /
    • 2017
  • In this study, the optimization process was carried out by using the central composite model of the response surface methodology in waste cooking oil based biodiesel production process. The acid value, reaction time, reaction temperature, methanol/oil molar ratio, and catalyst amount were selected process variables. The response was evaluated by measuring the FAME content (more than 96.5%) and kinematic viscosity (1.9~5.5 cSt). Through basic experiments, the range of optimum operation variables for the central composite model, such as reaction time, reaction temperature and methanol/oil molar ratio, were set as between 45 and 60 min, between 50 and $60^{\circ}C$, and between 8 and 12, respectively. The optimum operation variables, such as biodiesel production reaction time, temperature, and methanol/oil molar ratio deduced from the central composite model were 55.2 min, $57.5^{\circ}C$, and 10, respectively. With those conditions the results deduced from modeling were as followings: the predicted FAME content of the biodiesel and the kinematic viscosity of 97.5% and 2.40 cSt, respectively. We obtained experimental results with deduced operating variables mentioned above as followings: the FAME content and kinematic viscosity of 97.7% and 2.41 cSt, respectively. Error rates for the FAME content and kinematic viscosity were 0.23 and 0.29%, respectively. Therefore, the low error rate could be obtained when the central composite model among surface reaction methods was applied to the optimized production process of waste cooking oil raw material biodiesel.

Electrochemical Determination of Artemisinin in Artemisia annua L Herbal Tea Preparation and Optimization of Tea Making Approach (개똥쑥 약초차 제조에서 아르테미시닌의 전기화학적 측정과 차를 만드는 최적화로의 접근법)

  • Debnath, Chhanda;Dobernig, Andrea;Saha, Pijus;Ortner, Astrid
    • Journal of the Korean Chemical Society
    • /
    • v.55 no.1
    • /
    • pp.57-62
    • /
    • 2011
  • Sometimes inhabitants in remote areas have inadequate or no access to modern medicines or medical services. They can get benefit in term of the treatment against malaria by cultivating selected breeding of A. annua and making teas or decoctions from the plant materials following the proper way of tea preparation. In order to have the maximum extraction efficiency for artemisinin, different ways of tea preparations of A. annua were investigated by applying the developed DPP method and described in this article. Tea was prepared by three different ways (cooking, without cooking with/without shaking and microwave oven) with different times. From the results, it has been found that higher concentration of artemisinin (84.7%) can be attained by following the approach for tea preparation without cooking with shaking for 15 minutes (R.S.D. 2.34%). The concentration of artemisinin decreases with cooking more than 1.5 min in microwave oven. The utmost extraction (88.9% of artemisinin) is possible to extract by shaking with boiled 5% ethanol in distilled water (R.S.D. 2.28%).

Optimization of Process Variables for the Soda Pulping of Carpolobia Lutea (Polygalaceae) G. Don

  • Ogunsile, B.O.;Uba, F.I.
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.2
    • /
    • pp.257-263
    • /
    • 2012
  • The selection of suitable delignification conditions and optimization of process variables is crucial to the successful operation of chemical pulping processes. Soda pulping of Carpolobia lutea was investigated, as an alternative raw material for pulp and paper production. The process was optimized under the influence of three operational variables, namely, temperature, time and concentration of cooking liquor. Equations derived using a second - order polynomial design predicted the pulp yield and lignin dissolution with errors less than 8% and 11% respectively. The maximum variations in the pulp yield using a second order factorial design was caused by changes in both time and alkali concentration. Optimum pulp yield of 43.87% was obtained at low values of the process variables. The selectivity of lignin dissolution was independent of the working conditions, allowing quantitative estimations to be established between the pulp yield and residual lignin content within the range studied.

Production of Alcohol from Starch without cooking: A chemical gelatinization method (무증자(無蒸煮)전분법에 의한 알코올생산(生産): 화학적(化學的) 호화법(糊化法))

  • Park, Kwan-Hwa;Oh, Byung-Ha;Lee, Ke-Ho
    • Applied Biological Chemistry
    • /
    • v.27 no.1
    • /
    • pp.52-54
    • /
    • 1984
  • Ethanol fermentation from the chemically gelatinized starchy material was examined. The critical concentration of sodium hydroxide solution for gelatinization was dependent on the species of starch; 0.4M for potato and 0.6M for tapioca at room temperature. For alcohol fermention the starchy material was gelatinized by addition of sodium hydroxide solution, neutralized by sulfuric acid, and then yeast was added. The amount of $CO_2$ evolved during ethanol fermentation indicates that non-fermentable material was not produced from the starch by chemical gelatinization. In ethanol fermentation of potato and tapioca starch no significant difference was observed between the thermal and the chemical gelatinization.

  • PDF

Indoor exposure to hazardous air pollutants and volatile organic compounds in low-income houses in Lagos, Nigeria

  • Luqmon, Azeez;Musa, Olaogun;Mariam, Adeoye;Abdulazeez, Lawal;Babatunde, Agbaogun;Ibrahim, Abdulsalami;Adija, Majolagbe
    • Advances in environmental research
    • /
    • v.1 no.4
    • /
    • pp.277-288
    • /
    • 2012
  • This study investigated exposure to air pollutants in rooms in low-income houses at Shomolu (R1), Mafoluku (R2) and Mushin (R3) in Lagos state. The concentrations of most measured exceeded limits of Illinois Department of Public Health (IDPH) for indoor air quality. Air quality index (AQI) in rooms studied was unhealthy for sensitive people in terms of CO, unhealthy in terms of $SO_2$ and very unhealthy in terms of $NO_2$ while moderate air quality was obtained in terms of $PM_{10}$ in most rooms. High concentrations of carbontetrachloride, formaldehyde and xylene measured could have been responsible for some of the health complaints of the occupants. Factor analysis shows that cooking with kerosene, use of gasoline generator and insecticide were the major contributors to indoor air pollution in these rooms. Therefore, there is need to urgently tackle poverty as all affected by these pollutants were poor who live in substandard houses without kitchens.

A Study on the Removal Efficiency of Harmful Pollutants in the Cooking Chamber (조리실내의 유해오염물질 제거율에 관한 연구)

  • Kwon, Woo-Taeg;Lee, Woo-Sik
    • Culinary science and hospitality research
    • /
    • v.22 no.8
    • /
    • pp.149-156
    • /
    • 2016
  • The purpose of this study is to reduce the contaminants (total volatile organic compounds (TVOCs), fine particle, odor and total airborne bacteria) during cooking process in cooking chamber, and to decrease the health damage in indoor space that has bad work environment. In order to solve the shortcomings of existing air purifiers and remove all kinds of pollutants effectively, this study focused on the development of indoor air purifiers which are made of bar type. Bio-ceramics filter which combines activated carbon and loess. The air cleaners developed with 4 measuring items including TVOCs, particulate matter, complex odor and total airborne bacteria were measured comparing their pre-service test to their post-service test after a period of time. The measured results showed higher removal efficiency of 91.02% as the concentration of TVOCs was reduced from $2,500{\mu}g/m^3$ to $223{\mu}g/m^3$. Second, the particulate matter removal ratio was 97.51% efficient with average concentration of $26.68{\mu}g/m^3$. Third, the odor showed 95.20% reduction as air dilution ratio averaged out at 144. Last, total airborne bacteria was eliminated by over 94% showing the changeable concentration from $787{\sim}814CFU/m^3$ to $47{\sim}40CFU/m^3$. In addition, the removal rate of harmful pollutants is excellent, and it is expected that the environment of the existing poor cooking room will be greatly improved by using the developed air purifier in combination with the ventilation device and the stove hood.

Physico-chemical Properties and Utilization of Sarcoplasmic Proteins for the Determination of End-point Cooking Temperatures of Ground Pork Hams Containing Salt and Fat (식염 및 지방을 함유한 분쇄돈육의 이화학적 성상 및 최종가열온도 측정을 위한 근장단백질의 이용)

  • Kang, S.M.;Chin, K.B.;Cho, S.H.;Lee, J.M.
    • Journal of Animal Science and Technology
    • /
    • v.46 no.1
    • /
    • pp.83-90
    • /
    • 2004
  • Processed meals, such as a ground meat and hamburger patty, are required to ensure that no pathogens remain in the final products. However, there was no rapid method available to verify that the recommended end-point cooking temperature(EPT) was reached. Thus, the objective of this study was to rapidly determine EPT of ground pork hams using sodium dodecyl sulfate-polyacrylamide gel electrophoresis(SOS-PAGE), based on the disappearance of sarcoplasmic proteins after cooking. Fresh pork hams were added two levels of salt(0, 2%) and fat(15, 25%) combinations, and stored in refrigerator overnight, and cooked to internal cooking temperatures of $64^{\circ}C$ to $74^{\circ}C$ with $2^{\circ}C$ increments. Cooked pork hams were measured cooking loss(CL, %), protein solubility(PS) and SOS-PAGE. CL(%) was reduced with the addition of 2% salt, as compared to the control, regardless of fat contents. It was also increased with increasing eooking temperature. Protein solubility was affected by the cooking temperature, resulting in reduced PS up to $64^{\circ}C$(P < 0.05), but remained constant higher than $68^{\circ}C$. In SOS-PAGE analysis, protein bands with the molecular weights of 36 and 66 kDa were affected by the addition of salt and fat combinations. regardless of treatments. These protein fractions were decreased gradually with increased cooking temperatures up to $68^{\circ}C$ ${\sim}$ $70^{\circ}C$ and might be good indicators for the determination of EPT in ground pork hams.

Physico-chemical Properties and Changes of Sarcoplasmic Protein Bands of Chicken Meat Cuts with or without Salt during Cooking Temperatures (식염첨가 유무에 따른 계육의 부위별 가열온도에 따른 이화학적 성상과 근장 단백질 밴드의 변화)

  • Kim, Soo-Hee;Chin, Koo-Bok
    • Journal of Animal Science and Technology
    • /
    • v.49 no.2
    • /
    • pp.269-278
    • /
    • 2007
  • This study was performed to measure the pH, proximate composition, physicochemical properties, changes of protein bands, Hunter color values and endpoint cooking temperature of chicken leg and breast muscles during cooking from 64 to 74℃ with 2℃ increments. Chicken leg had higher pH, moisture and fat contents (%) and lower protein solubility(P<0.05) than chicken breast. Although the cooking losses(CLs, %) of chicken muscles increased with increased cooking temperature, the addition of 2% salt did not affect CL. The redness values of chicken leg without 2% salt were higher than chicken breast, however, the addition of 2% salt reduced the differences of the redness. Protein solubility decreased with increased cooking temperatures and were not affected by the addition of salt, and no further changes were observed higher than 68℃. Protein bands having the molecular weights of 66 and 54kDa were disappeared in the chicken leg at the cooking temperatures of 66~70℃, whereas 66, 54 and 34kDa in the chicken breast. These protein bands could be used potential indicators to determine the endpoint cooking temperature in chicken muscles.