• 제목/요약/키워드: Chemical conversion treatment

검색결과 186건 처리시간 0.022초

마그네슘-알루미늄 합금의 화성처리 공정 개발과 그 내식성 평가 (Development of chemical conversion coating process for Mg-Al alloy and its anti-corrosion property)

  • 김성종
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.265-266
    • /
    • 2006
  • The chemical conversion coating formed on magnesium alloy investigated for low cost and harmless in environment by using the colloidal silica as the main component. The film formed in 298 K is thick, the film, which was thought combination of Si-O, was formed. The film formed in 313 K is thinner than that in 298 K. The quantity of film formed at high temperature such as 333 K and 353 K is smaller than dissolved quantity. At the anodic polarization experiment, corrosion resistance in sealing by hot water after chemical conversion treatment in basic solution condition get worse than that in comparison with basic solution condition. In salt spray test, the ratio of black rust on specimen that did not conducted chemical conversion treatment was five times or more compared with those of chemical conversion treated specimen. The film thickness of chemical conversion coating produced by alkali treatment process is thinner than in comparison with that of specimen produced in basic chemical conversion treatment solution condition. It is thought, however, that it showed good corrosion resistance during salt spray test because the area of microcracks is small.

  • PDF

다양한 화성처리 용액 조건에서 마그네슘-알루미늄 합금위에 형성된 박막의 특성 평가 (Characteristics Evaluation of Thin Films Formed on Mg-Al Alloy in Various Chemical Conversion Solution Conditions)

  • 장석기;김성종;김정일
    • Journal of Advanced Marine Engineering and Technology
    • /
    • 제29권1호
    • /
    • pp.98-106
    • /
    • 2005
  • The chemical conversion film formed on magnesium alloy was investigated by using the colloidal silica with some parameters such as solution pH. temperature, solution conditions, and treatment time. Moreover. the solutions consisted of colloidal silica titanium sulfate, and cobalt ions were used for the colloidal silica film to having a good corrosion resistance and adhesion properties. It was thought that the film at 298K was made with combination of Si-O. The quantity of film formed at high temperature such as 333K and 353K is smaller than dissolved quantity during chemical conversion treatment. Adding $CoSO_4$ to the colloidal silica solution enhanced the adhesion force between the silica film and magnesium substrate, The optimum conditions for the chemical conversion treatment solution were PH 2.90 s treatment, and 298K.

도시 폐기물로부터 알코올 생산 (II) - 물리적, 화학적 전처리된 폐지의 효소가수분해 조건 검토 - (The Production of Alcohol from Municipal Waste(II) - The Effects of Physical or Chemical Treatment on the Enzymatic Hydrolysis of Waste Paper -)

  • 임부국;양재경;이종윤
    • Journal of the Korean Wood Science and Technology
    • /
    • 제25권1호
    • /
    • pp.65-70
    • /
    • 1997
  • The effects on the enzymatic hydrolysis of waste paper treated with physical or chemical treatment were investigated. To gain the higher saccharification rate, physical or chemical treatment are necessary in enzymatic conversion process of waste paper. The major deterrents to the effective utilization of waste paper for enzymatic conversion process are phenolic compounds, cellulose crystallinity and coating materials. In the enzymatic hydrolysis of waste paper, the deterrents through enzymatic conversion process can be eliminated by the physical or chemical treatment. This study was performed to obtain the optimal condition for enzymatic conversion process of non-treated waste paper and to review effects on enzymatic conversion process of waste paper treated with physical or chemical methods. In the aspect of saccharification rate, waste paper treated with 1.5% sodium hypochlorite was the most effective and in physical treatment methods, multi-stage treatment(autohydrolysis+refining treatment) was more effective than the other physical treatment.

  • PDF

마그네슘 합금의 방청을 위한 하이브리드 졸-겔 코팅제의 개발 (Development of Hybrid Sol-Gel Coating to Prevent Corrosion of Magnesium Alloys)

  • 이동욱;김영훈;문명준
    • Corrosion Science and Technology
    • /
    • 제17권1호
    • /
    • pp.30-36
    • /
    • 2018
  • The high rate of corrosion of magnesium alloys makes it limited for industrial applications. Therefore, surface treatment is required to enhance their corrosion resistance. In our study, a chemical conversion coating for protecting the corrosion of the magnesium alloy, AZ31B, was prepared by using a phosphate-permanganate solution. The chemical conversion coating had a limited protection ability due to defects arising from cracks and pores in the coating layer. The sol-gel coating was prepared by using trimethoxymethylsilane (MTMS) and 3-glycidoxypropyltrimethoxysilane (GPTMS) as precursors, and aluminum acetyl acetonate as a ring opening agent. The corrosion protection properties of sol-gel and conversion coatings in 0.35wt% NaCl solution were measured by the electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization test. The EIS results indicated that the resistance of the chemical conversion coating with the sol-gel coating was significantly improved through the sol-gel sealed phosphate-permanganate conversion coating. The results of the potentiodynamic polarization test revealed that the sol-gel coating decreased the corrosion current density ($I_{corr}$). The SEM image showed that the sol-gel coating sealed conversion coating and improved corrosion protection.

알카리성 인산-과망간산 용액을 이용한 AZ31 마그네슘 합금의 친환경 화성 처리 및 화성 피막의 특성 평가 (Characteristics of Environmentally-Friendly Conversion Coating of AZ31 Magnesium Alloy by a Alkaline Phosphate-Permanganate Solution)

  • 김명환;이만식;곽삼탁;문명준
    • 한국표면공학회지
    • /
    • 제44권3호
    • /
    • pp.82-88
    • /
    • 2011
  • A uniform chromium-free conversion coating treated with an alkaline phosphate- permanganate solution was formed on the AZ 31 magnesium alloy. The effect of acid pickling on the morphology and on the corrosion resistance of the alkaline phosphate-permanganate conversion coating was investigated. The chemical composition and phase structure of conversion coating layer were determined via optical microscopy, SEM, EDS, XPS and XRD. Results show that the conversion coatings are relatively uniform and continuous, with thickness 1.8 to $2.4\;{\mu}m$. The alkaline phosphate-permanganate conversion coating was mainly composed of elements Mg, O, P, Al and Mn. The conversion-coated layers were stable compounds of magnesium oxide and spinel ($MgAl_2O_4$). These compounds were excellent inhibitors to corrosion. The electrochemical corrosion behaviors of coatings in 3.5 wt.% NaCl solutions were evaluated by electrochemical impedance spectroscopy, potentiodynamic polarization technique. EIS results showed a polarization resistance of $0.1\;k{\Omega}$ for the untreated Mg and $16\;k{\Omega}$ for the alkaline phosphate-permanganate conversion treatment sample, giving an improvement of about 160 times. The results of the electrochemical measurements demonstrated that the corrosion resistance of the AZ 31 magnesium alloy was improved by the alkaline phosphate-permanganate conversion treatment.

비크롬계 인산-과망간산 용액을 이용한 AZ31 마그네슘 합금의 산처리에 따른 화성 피막의 특성 평가 (Characteristics Evaluation of Conversion Coating of Acid Pickling AZ31 Magnesium Alloy by a Chromium-Free Phosphate-Permanganate Solution)

  • 김명환;곽삼탁;문명준
    • 한국표면공학회지
    • /
    • 제43권2호
    • /
    • pp.73-79
    • /
    • 2010
  • A chromium-free conversion coating for AZ31 magnesium alloy has been obtained by using a permanganatephosphate solution, which has been developed with acid pickling. Examination have been carried out on the conversion coatings for morphology, composition and corrosion resistance. The morphology of the conversion-coated layer was observed using optical microscope and SEM. It was shown that the conversion coatings are relatively uniform and continuous, with thickness 1.8 to 2.7 ${\mu}m$. The chemical composition of conversion coating was mainly consisted of Mg, O, P, K, Al and Mn by EDS analysis. It was found that the corrosion resistance of the AZ31 magnesium alloy has been improved by the permanganate-phosphate conversion treatment from electrochemical polarization.

비열 플라즈마에 의한 NO의 산화에서의 탄화수소 첨가 효과와 그 반응역학에 대한 수치적 연구 (Numerical Study of the Effects of Hydrocarbon Addition and Corresponding Chemical Kinetics on the Promotion of NO Oxidation in Nonthermal Plasma DeNOx Treatment)

  • 신현호;윤웅섭
    • 한국연소학회지
    • /
    • 제5권2호
    • /
    • pp.37-50
    • /
    • 2000
  • In the present study, a systematic chemical kinetic calculations were made to investigate the augmentation of $NO-NO_2$ conversion due to the addition of various hydrocarbons (methane, ethylene, ethane, propylene, propane) in the nonthermal plasma treatment. It is included in the present conclusion that the reaction between hydrocarbon and oxygen radicals induced by electron collision, is believed to be a primarily process for triggering the overall NO oxidation and the eventual NOx reduction. Upon the completion of the initiating step, various radicals (OH, $HO_2$ etc.) successively are produced by hydrocarbon decomposition form the primary path of $NO-NO_2$ conversion. When the initiating step is not activated, hydrocarbon consumption rate appeared to be very low, thereby the targeted level of NO conversion can only be achieved by the addition of more input energy. Present study showed ethylene and propylene to have higher affinity with O radical under all conditions, thereby both of these hydrocarbons show very fast and efficient $NO-NO_2$ oxidation. It was also shown that propylene is superior to ethylene in the aspect of NOx removal.

  • PDF

아연계 인산염 피막용액에서 Fe(NO3)2 농도가 SCM430 합금의 전기화학적 거동에 미치는 영향 (Effect of Fe(NO3)2 Concentration on Electrochemical Behavior of SCM430 in Zinc Phosphate Conversion Coating Solution)

  • 권두영;송풍근;문성모
    • 한국표면공학회지
    • /
    • 제52권4호
    • /
    • pp.233-238
    • /
    • 2019
  • The formation behavior of zinc phosphate conversion coating (ZPCC) on SCM430 alloy was investigated in 25 vol.% of 1M ZnO + 170 ml/L solution containing various $Fe(NO_3)_2$ concentrations, using open-circuit potential(OCP), electrochemical impedance spectroscopy(EIS), cyclic polarization(CP) curve and tape peel test. OCP of SCM430 alloy and corrosion current density increased with increasing $Fe(NO_3)_3$ concentration. Resistance of films formed on SCM430 alloy by chemical conversion treatment decreased with increasing $Fe(NO_3)_3$ concentration. Color and adhesion of chemical conversion coatings became darker and worse, respectively, with increasing $Fe(NO_3)_3$ concentration. It is concluded that addition of $Fe(NO_3)_3$ into a zinc phosphating bath leads to faster reaction to form porous surface coatings with poor adhesion and corrosion resistance.

백색 LED용 색변환 렌즈의 열처리 온도 및 코팅 두께에 따른 영향 (Effect of Heat Treatment Temperature and Coating Thickness on Conversion Lens for White LED)

  • 이효성;황종희;임태영;김진호;정현석;이미재
    • 한국세라믹학회지
    • /
    • 제51권6호
    • /
    • pp.533-538
    • /
    • 2014
  • Today, silicon and epoxy resin are used as materials of conversion lenses for white LEDs on the basis of their good bonding and transparency in LED packages. But these materials give rise to long-term performance problems such as reaction with water, yellowing transition, and shrinkage by heat. These problems are major factors underlying performance deterioration of LEDs. In this study, in order to address these problems, we fabricated a conversion lenses using glass, which has good chemical durability and is stable to heat. The fabricated conversion lenses were applied to a remote phosphor type. In this experiment, the conversion lens for white LED was coated on a glass substrate by a screen printing method using paste. The thickness of the coated conversion lens was controlled during 2 or 3 iterations of coating. The conversion lens fabricated under high heat treatment temperature and with a thin coating showed higher luminance efficiency and CCT closer to white light than fabricated lenses under low heat treatment temperature or a thick coating. The conversion lens with $32{\mu}m$ coating thickness showed the best optical properties: the measured values of the CCT, CRI, and luminance efficiency were 4468 K, 68, and 142.22 lm/w in 20 wt% glass frit, 80 wt% phosphor with sintering at $800^{\circ}C$.