• Title/Summary/Keyword: Chemical cleavage

Search Result 295, Processing Time 0.024 seconds

Effect of pH on the Iron Autoxidation Induced DNA Cleavage

  • Kim, Jong-Moon;Oh, Byul-Nim;Kim, Jin-Heung;Kim, Seog-K.
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.4
    • /
    • pp.1290-1296
    • /
    • 2012
  • Fenton reaction and iron autoxidation have been debated for the major process in ROS mediated DNA cleavage. We compared both processes on iron oxidation, DNA cleavage, and cyclic voltammetric experiment at different pHs. Both oxidation reactions were preferred at basic pH condition, unlike DNA cleavage. This indicates that iron oxidation and the following steps probably occur separately. The ROS generated from autoxidation seems to be superoxide radical since sod exerted the best inhibition on DNA cleavage when $H_2O_2$ was absent. In comparison of cyclic voltammograms of $Fe^{2+}$ in NaCl solution and phosphate buffer, DNA addition to phosphate buffer induced significant change in the redox cycle of iron, indicating that iron may bind DNA as a complex with phosphate. Different pulse voltammogram in the presence of ctDNA suggest that iron ions are recyclable at acidic pH, whereas they may form an electrically stable complex with DNA at high pH condition.

Factors Influencing S-O Bond and C-O Bond Cleavages in the Reactions of 2,4-Dinitrophenyl X-Substituted Benzenesulfonates with Various Nucleophilic Reagents

  • 엄익환;김정주;김명진;권동숙
    • Bulletin of the Korean Chemical Society
    • /
    • v.17 no.4
    • /
    • pp.353-357
    • /
    • 1996
  • Second-order rate constants have been measured spectrophotometrically for the reaction of 2,4-dinitrophenyl X-substituted benzenesulfonates with Z-substituted phenoxides in absolute ethanol at 25.0±0.1 ℃. The nucleophilic substitution reaction gives both S-O bond and C-O bond cleavage products. The extent of S-O bond cleavage increases significantly with increasing electron withdrawing ability of the sulfonyl substitutent X, while that of the C-O bond cleavage is independent on the electronic effect of the substituent. On the contratry, the effect of the substituent Z in the nucleophilic phenoxide is more significant for the C-O bond cleavage than for the S-O bond cleavage. Aminolyses of 2,4-dinitrophenyl benzenesulfonate (1) with various 1°, 2° and 3°amines have revealed that steric effect is little important. The extent of S-O bond cleavage increases with increasing the basicity of the amines, but decreases with increasing the basicity of the nucleophilic aryloxides, indicating that the HSAB principle is not always operative. Besides, reactant and solvent polarizability effect has also been found to be an important factor in some cases but not always to influence the reaction site.

Detection of Cleavage Sites on 5S rRNA by Methidiumpropyl-EDTA-Iron(II)

  • Kim, Sang-Bumn;Cho, Bong-Rae;Lee, Young-Hoon;Park, In-Won
    • BMB Reports
    • /
    • v.29 no.2
    • /
    • pp.133-136
    • /
    • 1996
  • The affinity cleavage reagent Methidiumpropyl-EDTA-Iron(II) is applied to the structural analysis of 5S rRNA. Analysis of cleavage sites induced by MPE-Fe(II) on 5S rRNA shows that MPE intercalates easily between the unstable base pairs or into the bulges, thereby it strongly cuts the nucleosides nearby. The stable helical stems A, B, D and E as well as loop d are weakly cut. Most of the single-stranded loops are not cleaved. Based on the cleavage pattern of the 5S rRNA by MPE-Fe(II) and RNase V1, we suggest that MPE-Fe(II) may be used as a potential chemical probe in searching for the unstable helical regions of RNA, and for the sequences that appear to be involved in folding and distorting 5S rRNA.

  • PDF

Synthesis, Spectroscopic Studies of Binuclear Ruthenium(II) Carbonyl Thiosemicarba-zone Complexes Containing PPh3/AsPh3 as Co-ligands: DNA Binding/Cleavage

  • Sampath, K.;Sathiyaraj, S.;Jayabalakrishnan, C.
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.2
    • /
    • pp.367-373
    • /
    • 2013
  • The ruthenium(II) ferrocenyl heterocyclic thiosemicarbazone complexes of the type $[RuCl(CO)(EPh_3)]_2L$ (where E = P/As; L = binucleating monobasic tridendate thiosemicarbazone ligand) have been investigated. Strutural features were determined by analytical and spectral techniques. Binding of these complexes with CT-DNA by absorption spectral study indicates that the ruthenium(II) complexes form adducts with DNA and has intrinsic binding constant in the range of $3.3{\times}10^4-1.2{\times}10^5M^{-1}$. The complexes exhibit a remarkable DNA cleavage activity with CT-DNA in the presence of hydrogen oxide and the cleavage activity depends on dosage.

Free Radical-mediated Ring Expansion Reactions:Endocyclic Cleavage of Cyclopropylcarbinyl Radicals

  • Lee, Pil Ho;Lee, Byeong Cheol;Lee, Gu Yeon;Lee, Chang Hui;Jang, Suk Bok
    • Bulletin of the Korean Chemical Society
    • /
    • v.21 no.6
    • /
    • pp.595-603
    • /
    • 2000
  • Ring expansion reactions via endocyclic cleavage of cyclopropylcarbinyl radicals derived from the reaction of [1-benzyloxycarbonylbicyclo[n. 1.O]alk-(n+l)-yl] -1-imidazolethiocarboxylates with tributyltin hydride/AIBN proceeded to produce 3-cycloalkenecarboxylates in good yields. Benzyl (5'-phenoxypentyl) -3-cyclohepten-1 -carboxylate was obtained in 33% yield from the reaction of benzyl 5-methylenebicyclo [4. 1.0]- 1-carboxylates with 4-phenoxybutyl iodide under radical conditions. Selective cleavage of endocyclic bond in cyclopropane to the cyclohexane, results from stabilization of the resultant radical by the carbonyl groups, such as the benzyloxycarbonyl group, which lower the transition state energy for the final cyclopropane cleavage in the ring expansion.

A New Functional Model Complex of Extradiol-cleaving Catechol Dioxygenases: Properties and Reactivity of [$Fe^{II}$(BLPA)DBCH]BPh₄

  • Lim, Ji H.;Park, Tae H.;이호진;이강봉;Jang, Ho G.
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.12
    • /
    • pp.1428-1432
    • /
    • 1999
  • [Fe$^{II}$(BLPA)DBCH]BPh₄ (1), a new functional model for the extradiol-cleaving catechol dioxygenases, has been synthesized, where BLPA is bis(6-methyl-2-pyridylmethyl)(2-pyridylmethyl)amine and DBCH is 3,5-di-tert-butylcatecholate monoanion. ¹H NMR and EPR studies confirm that 1 has a high-spin Fe(II) (S = 2) center. The electronic spectrum of 1 exhibits one absorption band at 386 nm, showing the yellow color of the typical [Fe$^{II}$(BLPA)] complex. Upon exposure to O₂, 1 is converted to an intense blue species within a minute. This blue species exhibits two intense bands at 586 and 960 nm and EPR signals at g = 5.5 and 8.0 corresponding to the high-spin Fe(III) complex (S = 5/2, E/D = 0.11). This blue complex further reacts with O₂ to be converted to (μ-oxo)Fe$^{III}_2$ complex within a few hours. Interestingly, 1 affords intradiol cleavage (65%) and extradiol cleavage (20%) products after the oxygenation. It can be suggested that 1 undergoes two different oxygenation pathways. The one takes the substrate activation mechanism proposed for the intradiol cleavage products after the oxidation of the $Fe^II\;to\;Fe^{III}$. The other involves the direct attack of O₂ to $Fe^{II}$ center, forming the $Fe^{III}$-superoxo intermediate which can give rise to the extradiol cleavage products. 1 is the first functional Fe(II) complex for extradiol-cleaving dioxygenases giving extradiol cleavage products.

Effect of Sperm Treatment and Co-culture on cleavage of Porcine Oocytes Matured In Vitro (정자처리와 공배양이 체외성숙된 돼지 난포란의 분할에 미치는 영향)

  • 이장희;김창근;정영채;박충생
    • Journal of Embryo Transfer
    • /
    • v.9 no.3
    • /
    • pp.269-277
    • /
    • 1994
  • The objective of this study was to develop an effective in vitro production system capable of obtaining more porcine embryos from immature oocytes These experiments were conducted to examine the effect of sperm factor on the IVF and IVD, and the effect of coculture with somatic cells on the IVD of embryos. Although the concentration of epididymal sperm for IVF did not affect on cleavage rate, but 5 x 105 sperm/mi showed the highest cleavage rate(48.7%) and the developmental potential of IVF oocytes from this concentration was also greatly higher (P$^{\circ}C$-stored sperm for l2hrs and the cleavage rate from fresh sperm was significantly higher (P<0.05) than that from frozen sperm, but the developmental potential after IVF was slightly high from the frozen sperm. The cleavage rate of IVF oocytes cocultured with oviductal epithelial cells and cumulus cells was 76.3% and 72.9%, respectively. There was no difference between two coculture systems but this rate was significantly higher(P<0.05) than that of medium alone(42.0%).

  • PDF