• Title/Summary/Keyword: Chemical admixture

Search Result 192, Processing Time 0.024 seconds

A Study on Hydration Properties of Recycled Cement Mortar using Admixture Materials (혼화재료를 혼입한 재생시멘트 모르터의 수화특성에 관한 연구)

  • Park, Cha-Won;Kang, Byeung-Hee
    • Journal of the Korea Institute of Building Construction
    • /
    • v.4 no.4
    • /
    • pp.79-86
    • /
    • 2004
  • The purpose of this study was the development of a recycling process to recover the hydraulic properties of hydration products which account for a large proportion of cementitious powder from concrete waste. This process was performed to recycle cementitious powder as recycle cement. Therefore, after the theoretical consideration of the properties of recycle process of recycled aggregates and cementitious powder, we investigated the hydraulic properties of cementitious powder under various temperature conditions in hardened mortar which was modeled on concrete waste. And we analyzed properties of chemical reactions of recycled cement with admixture materials such as Fly-Ash, Blast Furnace Slag As a result of the experiment, the most effective method to recover hydraulic properties of the cementitious powder from concrete waste was condition of burning at 700℃ for 120 minute. And it is shown that the fluidity of mortar was decreased rapidly when the burning temperature of recycle cement was increased. However, the compressive strength and fluidity were improved significantly when admixture materials such as Fly-Ash or Blast Furnace Slag was added.

Activating Temperature of Kaolin As a Cement Admixture

  • Park, Hee-Yong;Hwang, Hey-Zoo;Kim, Moo-Han;Kim, Moon-Han
    • KCI Concrete Journal
    • /
    • v.13 no.1
    • /
    • pp.3-9
    • /
    • 2001
  • This research concerns the effect of kaolin as material of cement admixture. which has the advantage of low price and high adaptability. Kaolin, a kind of soil, is well known as a raw material of pottery. which is widely scat-tered on the earth (especially in Korea). This research shows the method and process for activating kaolin to have the properties of a cement admixture through experiment. In the experiments, kaolin is baked in high temperature and then cooled suddenly to be activated. The temperature zone and time span, on which kaolin is activated are examined. The research looks over the effect of the activated kaolin based on several criteria regarding to chemical and physical characteristic of general admixtures. The results of this research are as follows; kaolin start activation at the temperature above 50$0^{\circ}C$ and make ends of activation at the temperature below 95$0^{\circ}C$ and there was little effect by the change of duration. It is concluded that compressive strength can be increased by putting activated kaolin in the concrete and the activated kaolin is good for water resistance and anti-chemical , and that it is effective for protecting the leakage of hazardous article like Cl- and for protecting damage by an organic salt like acid. The activated kaolin of proper temperature and time is effective in compressive strength, salt resistance and acid resistance. The adaptability of activated kaolin as a cement admixture was shown through this research.

  • PDF

The Study on the Properties of Polymer Emulson Modified Mortar -Effects of Polyacrylicacid Ester and Polystyrene Modified Mortar- (고분자에말죤의 첨가에 따른 시멘트모르터의 특성에 관한 연구 -Polyacrylicacid Ester 및 Polystyrene 에말죤의 첨가영향-)

  • 김창은;최강순
    • Journal of the Korean Ceramic Society
    • /
    • v.12 no.4
    • /
    • pp.9-18
    • /
    • 1975
  • Polymer emulsion was used as the admixture for the purpose of increasing the mechanical properties of cement mortar. The effect of polymer emulsion admixture on compressive strength and tensile strength and chemical resistance, relative humidity on compressive and tensile strength, sand particles on water absorption were studied. The results were as follows. 1. Polymer emulson modified mortar cured under 95% of realative humidity showed lower strength than the mortar cured at dry condition. 2. The maximum strength was attained at 10~20% of polystyrene and polyacrylic acid ester polymer-cement mortar. 3. The modified mortar (sand size rate (-9+35)mech:(-35+60)mech=4 : 1) was 1.5 times lower than the modified mortar (1 : 1) in water absorption. 4. Compared with the ordinary mortar, the modified mortar showed 2~3 times greater chemical resistance for 5% HCl or 5% H2SO4.

  • PDF

Metachromasy of Methylene Blue and Thionine on the Phospholipid Bilayer Membrane (Phospholipid 이중층막에서 Methylene Blue와 Thionine의 Metachromasy)

  • Kim, Ki-Jun;Lee, Hoo-Seol
    • Journal of the Korean Applied Science and Technology
    • /
    • v.13 no.3
    • /
    • pp.43-49
    • /
    • 1996
  • Metachromatic properties of admixture of thionine and methylene blue(MB) in aqueous solution and phospholipid bilayer membrane have been studied by absorption spectroscopy. When thionine and MB were mixed, new coaggregate has been formed because of MB was redistributed to thionine aggregate. In phosphlipid bilayer membrane system, the highly concentrated thionine was easily formed the coaggregation with MB moiety independent of MB concentration, and absorption band of admixture were more transferred to short wavelength than aqueous system. In monomeric thionine concentration, the coaggregation band was observed at the middle wavelength between the site of monomeric thionine and the site of dimeric MB in the presence of lipid bilayer membrane.

A Study on Application of Ready Mixed Concrete of Lightweight Aggregate using Rubbish (폐분진을 이용한 인공경량골재콘크리트의 레미콘 적용 연구)

  • Noh Youn Sun;Ji Suk Won;Seo Chee ho;Lee Jae Sam;Jee Suck Won;Lee Seung Yeun
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2005.11a
    • /
    • pp.427-430
    • /
    • 2005
  • The purpose of this study is to choose the right chemical admixture to reduce slump loss of lightweight aggregate concrete. So we compare 3 types of chemical admixture as measuring slump loss from mixing to 60 minutes. The lightweight aggregate of this study is made by clayt and dust from lots of industry. To save natures, we will use many types of industrial wastes and try to spend much making artificial aggregate.

  • PDF

Experimental Study on Bonding Properties of Reinforced Concrete with Water-Cement Ratio and Blending of Mineral Admixture (물-시멘트비 및 혼화재 혼입에 따른 철근콘크리트의 부착 특성에 관한 연구)

  • Choi, Yoon-Suk;Kim, Myung-Yu;Yang, Eun-Ik;Yi, Seong-Tae
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2006.05b
    • /
    • pp.225-228
    • /
    • 2006
  • To clarify the one body behavior of reinforcing bar and concrete, it is important to investigate bond characteristics between two materials. Bond strength is decided by applied force and interface area between reinforcing bar and concrete. And, the resultant force of chemical adhesive force, frictional force, and mechanical interaction are to be main factors. Property of concrete influences on chemical adhesive force and frictional force; bond strength is decreased by corrosion of reinforcing bar, as the result, durability is also decreased. In this study, to confirm bond characteristics with property of concrete, w/c ratio and blending of mineral admixture were selected as the main test parameters. The results obtained from this study will be used as the basic data for bond characteristics with corrosion.

  • PDF

Experimental Study on the Basic Properties of Mortar Composition Having Color Changing According to the Temperature Influence by Mixing of Pigment. (감온성 안료의 혼입에 따른 온도반응 색변환 모르타르의 기초물성에 관한 실험적 연구)

  • Yoon, Ki-Won;Lee, Joo-Hun;Park, Yong-Kyu;Jeon, In-Ki
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 2009.05a
    • /
    • pp.437-438
    • /
    • 2009
  • This study is to investigae the properties of mortar with temperature reactive pigment. The results of the experiment, the compression strength of mortar increases by the rate of chemical admixture and temperature reactive pigment. And it is also excellent color expression with the use of chemical admixture.

  • PDF

The Study on the Optimum Mix Design of the High-Strength Concrete in Site (고강도 콘크리트의 현장최적배합에 관한 연구)

  • Lee, Sang-Soo;Won, Cheol;Kim, Dong-Seok;Ahn, Jae-Hyun;Park, Chil-Lim
    • Proceedings of the Korea Concrete Institute Conference
    • /
    • 1996.10a
    • /
    • pp.232-238
    • /
    • 1996
  • In this paper, the properties of high-strength concrete are described with respect to materials and mix conditions(water-cement ratio, chemical admixture, replacement of fly ash). As primary purposes of this study, the optimum mix design method of high-strength concrete to decrease unit cement contents is investigated, and the properties of fresh and hardened concretes are tested in terms of slump, air content and compressive strength. As results of this study, workability and strength development of the high-strength concrete depend on the water-cement ratio, replacement ratio of fly ash and dosage of the chemical admixture. The conditions which are proposed optimum mix design of the high-strength concrete show W/C 37%, S/A 42~45% and unit cement content 470~480kg/$\textrm{m}^3$. Based on the results, the applicability of high-strength concrete in site is clearly proved.

  • PDF

An Experimental Study on the Change in Chemical Components of Admixture mixed Cement Paste Exposed to Elevated Temperatures (혼화재 혼입 시멘트 페이스트의 고온 수열시 성분 변화에 관한 실험적 연구)

  • Ha, Ji-Yeon;Lee, Han-Seung
    • Proceedings of the Korean Institute of Building Construction Conference
    • /
    • 2013.11a
    • /
    • pp.154-155
    • /
    • 2013
  • The aim of this work is to have a better knowledge of reactions that take place in a cement paste, blast furnace slag mixed cement paste and fly ash mixed cement paste and know about the change in chemical components exposed to elevated temperature. The results show that the dehydration reactions appeared differently in the each admixture mixed cement paste and can be used as tracers for determining the temperature history of concrete after a fire exposure.

  • PDF

Experimental Study of Exterior Panel Properties using Ultra High Performance Concrete (UHPC를 활용한 건축용 외장 패널 특성에 관한 실험적 연구)

  • Park, Oh-Seong;Cho, Hyeong-Kyu
    • Journal of the Korea Institute of Building Construction
    • /
    • v.22 no.3
    • /
    • pp.229-237
    • /
    • 2022
  • Ultra High Performance Concrete(UHPC) is a construction material that has a low water-binder ratio (W/B), a high-performance chemical admixture(SP), mixing material and steel fiber, and performance superior to that of regular concrete in terms of liquidity and strength. In the study, UHPC was used to prepare construction external panels that can replace existing stone panels. In addition, experiments were conducted to access the effects of differences in chemical admixture input amount, the number of fillers, antifoaming agent and steel fiber. An evaluation, was conducted, such of concrete compressive strength, flexural strength, impact strength, absorption rate, and frost resistance. The results showed compressive strength up to 115.5MPa, flexural strength of 20.3MPa, and an absorption rate of 1%. In this case, impact strength and frost resistance evaluation were satisfied with outward observed.