• Title/Summary/Keyword: Chemical Tools

Search Result 335, Processing Time 0.025 seconds

Development of Robotic Tools for Chemical Coupler Assembly

  • Jeong, Sung-Hun;Kim, Gi-Seong;Park, Shi-Baek;Kim, Han-Sung
    • Journal of the Korean Society of Industry Convergence
    • /
    • v.25 no.6_1
    • /
    • pp.953-959
    • /
    • 2022
  • In this paper, the design result of robotic tools and the development of robot control system for chemical coupler assembly are presented. This research aims to eliminate the risk of chemicals exposed to human operators by developing the robotic tools and robot automation system for chemical tank lorry unloading that were done manually. Due to tight tolerance between couplers, even small pose error may result in very large internal force. In order to resolve the problem, the 6-axis compliance device is employed, which can provide not only enough compliance between couplers but also F/T sensing. The 6-axis compliance device having large force and moment capacity is designed. A simple linear gripper with rack-and-pinion is designed to grasp two sizes of couplers. The proposed robot automation system consists of 6-DOF collaborative robot with offset wrist, 6-axis compliance device with F/T sensing, linear gripper, and two robot visions.

Comparison of Cutting Characteristics between Cermet, Carbide and Coated Carbide Tools in Turning (선삭가공에서 서멧과 초경 및 코팅 초경공구의 절삭특성 비교)

  • 안동길
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.17 no.5
    • /
    • pp.186-194
    • /
    • 2000
  • The purpose of this study is to investigate the difference in cutting characteristics of cermet, carbide and coated carbide tools in the similar application range via turning test of various conditions. The cermet and carbide tools in the range of ISO P10 grade were developed using optimum compositions with a view to obtaining a high toughness and hardness by PM process. First mechanical properties were characterized on these tools. Experimental results of wear behaviour and resistance to fracturing were presented and discussed in the turning of gray cast iron and alloy steels by cermet, carbide and coated carbide tools. The coated carbide tool shows similar cutting performance compared to the cermet, while the cermet has better combination of wear resistance and toughness of high speed (V=500m/min) cutting in comparison with carbide and coated carbide tools, and also shows a potentiality for cast iron cutting. Fe adhesive behaviour on the tools and surface roughness of workpieces were explained by chemical affinity between tools and workpieces.

  • PDF

Is HAZOP a Reliable Tool? What Improvements are Possible?

  • Park, Sunhwa;Rogers, William J.;Pasman, Hans J.
    • Journal of the Korean Institute of Gas
    • /
    • v.22 no.2
    • /
    • pp.1-20
    • /
    • 2018
  • Despite many measures, still from time to time catastrophic events occur, even after reviewing potential scenarios with HAZID tools. Therefore, it is evident that in order to prevent such events, answering the question: "What can go wrong?" requires more enhanced HAZID tools. Recently, new system based approaches have been proposed, such as STPA (system-theoretic process analysis) and Blended Hazid, but for the time being for several reasons their availability for general use is very limited. However, by making use of available advanced software and technology, traditional HAZID tools can still be improved in degree of completeness of identifying possible hazards and in work time efficiency. The new HAZID methodology proposed here, the Data-based semi-Automatic HAZard IDentification (DAHAZID), seeks to identify possible scenarios with a semi-automated system approach. Based on the two traditional HAZID tools, Hazard Operability (HAZOP) Study and Failure Modes, Effects, and Criticality Analysis (FMECA), the new method will minimize the limitations of each method. This will occur by means of a thorough systematic preparation before the tools are applied. Rather than depending on reading drawings to obtain connectivity information of process system equipment elements, this research is generating and presenting in prepopulated work sheets linked components together with all required information and space to note HAZID results. Next, this method can be integrated with proper guidelines regarding process safer design and hazard analysis. To examine its usefulness, the method will be applied to a case study.

Non-Invasive Plasma Monitoring Tools and Multivariate Analysis Techniques for Sensitivity Improvement

  • Jang, Haegyu;Lee, Hak-Seung;Lee, Honyoung;Chae, Heeyeop
    • Applied Science and Convergence Technology
    • /
    • v.23 no.6
    • /
    • pp.328-339
    • /
    • 2014
  • In this article, plasma monitoring tools and mulivariate analysis techniques were reviewed. Optical emission spectroscopy was reviewed for a chemical composition analysis tool and RF V-I probe for a physical analysis tool for plasma monitoring. Multivariate analysis techniques are discussed to the sensitivity improvement. Principal component analysis (PCA) is one of the widely adopted multivariate analysis techniques and its application to end-point detection of plasma etching process is discussed.

Computer Models of Bacterial Cells To Integrate Genomic Detail with Cell Physiology

  • Shuler, Michael L.
    • Proceedings of the Korean Society for Applied Microbiology Conference
    • /
    • 2005.06a
    • /
    • pp.54-62
    • /
    • 2005
  • While genomics (the set of experimental and computational tools that allows the blueprints of life to be read) opens the doors to a more rational approach to the design and use of living cells to bring about desirable chemical transformations, genomics is, by itself, insufficient. We need tools that allow us to relate genomic and molecular information to cellular physiology and then to the response of a population of cells. We propose the development of hybrid computer cellular models. In such models genomics and chemical detail for a cellular subsystem (e.g. pathogenesis) is embedded in a coarse-grain cell model. Such a construct allows the quantitative and explicit linkage of genomic detail to cell physiology to the extracellular environment. To illustrate the principles involved we are constructing a model for a minimal cell. A minimal cell is a bacterial cell with the fewest number of genes necessary to sustain life as a free living microbe.

  • PDF

VIBRATIONAL SPECTROSCOPY IN INDUSTRIAL CHEMICAL QUALITY CONTROL

  • Siesler, H.W.
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1081-1081
    • /
    • 2001
  • The constant need for quality improvement and production rationalization in the chemical and related industries has led to the increasing replacement of conservative control procedures by more specific and environmentally compatible analytical techniques. In this respect, vibrational spectroscopy has developed over the last yews - in combination with new instrumental accessories and statistical evaluation procedures - to one of the most important analytical tools for industrial chemical quality control and process monitoring in a wide field of applications. In the present communication this potential is demonstrated in order to further support the implementation of mid-infrared (MIR), near-infrared (NIR) and Raman spectroscopy Primarily as industrial on-line tools. To this end the data of selected feasibility studies will be discussed in terms of the individual strengths of the different techniques for the respective application.

  • PDF

Comparison of Discourse by Environments for Using Tools in Small Group Learning with Augmented Reality (증강현실을 활용한 소집단 학습에서 도구 사용 환경에 따른 담화 비교)

  • Seokjin Shin;Haerheen Kim;Taehee Noh;Nayoon Song
    • Journal of The Korean Association For Science Education
    • /
    • v.43 no.2
    • /
    • pp.181-190
    • /
    • 2023
  • In this study, we compared discourse by environments for using tools in terms of participation types, discourse types, and knowledge building processes. 24 first-year high school students were divided into six groups. They were assigned to the sharing tools environment, which used one marker and one smart device, or the individual tools environment, which used markers and smart devices individually. Students participated in small group learning using AR application based on the concept of chemical bonding. All classes were video- and audio-taped. Semi-structured interviews were conducted with six students who voluntarily agreed. The results of the study revealed that the sharing tools environment had a high proportion of one-student dominating type, while the individual tools environment had a high proportion of partly participating type and most students participating type. In the individual tools environment, the ratio of knowledge sharing and knowledge construction discourse was similar compared to the tool sharing environment, and the sub-discourse types were also diverse. In the sharing tools environment, only some students had a meaningful knowledge building process. On the other hand, in the individual tools environment, most of the group members constructed knowledge about the target concept, and had a meaningful knowledge building process. In addition, the misconceptions that appeared to some group members were corrected through small group discussions.

Present and Future Perspectives on Exposure Assessment Tools Used to Implement EU REACH (EU REACH 이행에 사용되는 노출평가 툴의 현황과 전망)

  • Sanghun Kim;Dong Hyeon Kim;Eun Kyung Choe;Hyun Pyo Jeon
    • Journal of Environmental Health Sciences
    • /
    • v.50 no.4
    • /
    • pp.237-256
    • /
    • 2024
  • Background: Human health and environment exposure assessments of chemicals are essential part for REACH and BPR as well as K-REACH and K-BPR. Several useful exposure assessment tools have been developed and updated to become extensively used during more than fifteen years of chemical registrations under REACH and their updates are still going on. Objectives: Evolution of regulatory tools for environment, workers and consumers exposure assessments under REACH is investigated focusing on why and how tools have been developed and updated for the future regulatory tools in Korea. Methods: REACH regulatory tools including EUSES, ECETOC TRA and CHESAR as well as built-in models SimpleTreat and SimpleBox were chosen with other frequently used Tier 1 and 2 tools. Available resources such as homepage information, background documents, related scientific reports, relevant journal publications, up-to-date lists of new version publications, release notes and user guides were reviewed extensively and summarized using easy-readable Tables and Figures. Results: SimpleTreat and SimpleBox are built-in models both for EUSES and ECETOC TRA (Environment). ECHA's CHESAR contains ECETOC TRA (Workers) and ECETOC TRA (Consumers) as well as EUSES and ECETOC TRA (Environment) for environment exposure assessment while results of Tier 2 Stoffenmanager and ConsExpoWeb can be imported. Evolution of CHESAR from version 1 (2010) to 3.8 (2023) has focused on the compatibility of frequent updates of IUCLID, importing functionality, editability, updated use maps, harmonised conditions of use as well as updates of the built-in tools evolved according to scientific development, refinements of the tool, increased conservatism and user-friendliness. CHESAR Platform 1.0 will soon be published to serve both for REACH and BPR. Conclusions: Updates of the tools can be successfully continued by transparency of the tools, participation of industry sectors for tool refinements and tool developers'/authorities' encouragements of partners/users to jointly innovate tools through scientific researches, tool validations and user feedback.

Techniques for Handling Uranium Particles with Micro-tools (미세도구를 사용한 미세크기의 우라늄입자 취급기술)

  • Pyo, Hyung-Ryul;Park, Yong-Joon;Sohn, Se-Chul;Jeon, Young-Shin;Song, Byoung-Chul;Jee, Kwang-Yong;Kim, Won-Ho
    • Analytical Science and Technology
    • /
    • v.13 no.4
    • /
    • pp.440-445
    • /
    • 2000
  • The techniques for manipulation of various micro-tools were essential for particle isolation and chemical analysis of micro-size particles. This report described the detailed techniques for the preparation and handling of several micro-tools. Presence of uranium particles in smeared filter paper were identified by using the solid track detector. The uranium particles were isolated using the micro-tools under the stereomicroscope and then transferred to the filament of TIMS for the determination of isotope ratios.

  • PDF

Advances in Optical Tools to Study Taste Sensation

  • Gha Yeon, Park;Hyeyeong, Hwang;Myunghwan, Choi
    • Molecules and Cells
    • /
    • v.45 no.12
    • /
    • pp.877-882
    • /
    • 2022
  • Taste sensation is the process of converting chemical identities in food into a neural code of the brain. Taste information is initially formed in the taste buds on the tongue, travels through the afferent gustatory nerves to the sensory ganglion neurons, and finally reaches the multiple taste centers of the brain. In the taste field, optical tools to observe cellularlevel functions play a pivotal role in understanding how taste information is processed along a pathway. In this review, we introduce recent advances in the optical tools used to study the taste transduction pathways.