• Title/Summary/Keyword: Chemical Ratio

Search Result 5,975, Processing Time 0.036 seconds

Structure Effects on Organic Thin-Film Transistor Properties of Dinaphthyl Substituted Pentacene Derivatives

  • Son, Ji-Hee;Kang, In-Nam;Oh, Se-Young;Park, Jong-Wook
    • Bulletin of the Korean Chemical Society
    • /
    • v.28 no.6
    • /
    • pp.995-998
    • /
    • 2007
  • Pentacene moiety has been widely studied in Organic Thin-Film Transistor (OTFT) device as a channel layer because of high carrier mobility. In this study, we have fabricated vertical type Organic Static Induction Transistors (SITs) using pentacene, 6,13-Dinaphthalen-1-ly-Pentacene (1-DNP, 3), and 6,13-Dinaphthalen-2- ly-Pentacene (2-DNP, 4). 1-DNP and 2-DNP have same naphtyl group with pentacene, but different linked position and spatial arrangement. We have checked the static characteristics of materials in vertical type SITs device. We found that pentacene has as on/off ratio of 14.56, 1-DNP and 2-DNP shows as on/off ratio of 36.58 and 6.61 at VDS = 2V in SIT, respectively.

A Study on Indium Gallium Oxide Thin Film Transistors prepared by a Solution-based Deposition Method (저온 용액공정을 이용한 인듐갈륨 산화물(IGO) 박막트랜지스터 제조 및 특성 연구)

  • Bae, Eunjin;Lee, Jin Young;Han, Seung-Yeol;Chang, Chih-Hung;Ryu, Si Ok
    • Korean Chemical Engineering Research
    • /
    • v.49 no.5
    • /
    • pp.600-604
    • /
    • 2011
  • Solution processed IGO thin films were prepared using a general chemical solution route by spin coating. The effect of the annealing temperature of IGO thin films based on the ratio of 2:1 of indium to gallium on crystallization was investigated with varying annealing temperature from $300^{\circ}C$ to $600^{\circ}C$. The electronic device characteristic of IGO thin film was investigated. The solution-processed IGO TFTs annealed at 300 and $600^{\circ}C$ in air for 1 h exhibited good electronic performances with field effect mobilities as high as 0.34 and 3.83 $cm^2/V{\cdot}s$, respectively. The on/off ratio of the IGO TFT in this work was $10^5$ with 98% transmittance.

Properties of CdS Thin Films Prepared by Chemical Bath Deposition as a Function of Thiourea/CdAc2 Ratio in Solution (CBD법으로 제작된 CdS 박막의 thiourea/CdAc2 농도비에 따른 특성)

  • Song, Woo-Chang
    • Journal of the Korean institute of surface engineering
    • /
    • v.41 no.1
    • /
    • pp.28-32
    • /
    • 2008
  • In this paper CdS thin films, which were widely used window layer of the CdS/CdTe and the CdS/$CuInSe_2$ heterojunction solar cell, were grown by chemical bath deposition, which is a very attractive method for low-cost and large-area solar cells, and the structural, optical and electrical properties of the films was studied. As the thiourea/$CdAc_2$ mole ratio was increased, the deposition rate of CdS films prepared by CBD was increased due to increasing reaction velocity in solution and the optical bandgap was increased at higher thiourea/$CdAc_2$ mole ratio due to larger grain size and continuous microstructure. The minimum resistivity of the films was at thiourea/$CdAc_2$ mole ratio of 3.

Evaluating Interfacial Force between Viscoelastic Ink and Substrate in Gravure Printing Process (그라비아 프린팅 공정에서 점탄성 잉크와 기판의 계면접착력 평가)

  • Yu, Milim;Ahn, Kyung Hyun;Lee, Seung Jong
    • Korean Chemical Engineering Research
    • /
    • v.53 no.1
    • /
    • pp.111-115
    • /
    • 2015
  • To produce patterns with high resolution in gravure printing, it is important to increase ink transfer ratio. The ink which has higher affinity with substrate can be transferred more from the roll to the substrate due to the good wettability between ink and substrate. However, it is difficult to evaluate the affinity between the substrate and the ink which is viscoelastic in nature. In this study, we suggest a practical method to evaluate the interfacial interaction between the ink and various substrates.

Oxygen Control in CdS Thin Film by UV Illumination in Chemical Bath Deposition (용액성장법에서 자외선 조사를 이용한 CdS의 산소함량 제어)

  • Baek, Hyeon-ji;Oh, Ji-A;Seo, Young-Eun;Shin, Hye-Jin;Cho, Sung-Wook;Jeon, Chan-Wook
    • Current Photovoltaic Research
    • /
    • v.7 no.2
    • /
    • pp.33-37
    • /
    • 2019
  • In this paper, we compared the performance of $Cu(In,Ga)(S,Se)_2$ (CIGSSe) thin film solar cell with CdS buffer layer deposited by irradiating 365 nm UV light with 8 W power in Chemcial Bath Deposition (CBD) process. The effects of UV light irradiation on the thin film deposition mechanism during CBD-CdS thin film deposition were investigated through chemical and electro-optical studies. If the UV light is irradiated during the solution process, the hydrolysis of Thiourea is promoted even during the same time, thereby inhibiting the formation of the intermediate products developed in the reaction pathway and decreasing the pH of the solution. As a result, it is suggested that the efficiency of the CdS/CIGSSe solar cell is increased because the ratio of the S element in the CdS thin film increases and the proportion of the O element decreases. This is a very simple and effective approach to control the S/O ratio of the CdS thin film by the CBD process without artificially controlling the process temperature, solution pH or concentration.

Effects of Temperature on the Hydrophobic to Hydrophilic Ligand Ratio on the Surface of Amphiphilic Gold Nanoparticles (양친매성 금입자 표면의 소수성/친수성 비율에 대한 온도 영향)

  • Lee, Hwa-Jin;Kim, Hyun-Jin;Kim, Min-Guk;Chang, Ji Woong;Lee, Hee-Young
    • Applied Chemistry for Engineering
    • /
    • v.30 no.3
    • /
    • pp.308-312
    • /
    • 2019
  • Amphiphilic gold nanoparticles were synthesized by the functionalization of gold nanoparticles with hydrophilic and hydrophobic ligands on their surfaces, which can be applied to many disciplines such as biology, photonics, electronics, and so on. The ratio of hydrophilic and hydrophobic ligands plays an important role in such applications since the ratio is closely related to physiochemical properties of the nanoparticles. In this paper, the effect of temperature during the ligand exchange reaction on the ratio of ligands on the gold nanoparticle surface was investigated. Hydrophilic ligands have higher affinity to the nanoparticle surface with an increase of the temperature. Furthermore, the amphiphilic nanoparticles at a higher temperature were more soluble in an aqueous solution even with a lower hydrophilicity of the nanoparticle surface.

Effect of N2 Diluent on Soot Formation Characteristics in Ethylene Diffusion Flames (에틸렌 확산화염 내 질소 혼합이 매연 생성 특성에 미치는 영향)

  • Jun-Soo Kim
    • Journal of the Korean Society of Marine Environment & Safety
    • /
    • v.29 no.4
    • /
    • pp.356-362
    • /
    • 2023
  • The risk of climate change has been long acknowledged, and ongoing efforts to overcome this issue, within the shipping sector, with the international maritime organization playing a central role. Conducting research on characteristics of soot formation is crucial to control its occurrence within the combustion process. In this study, the laser extinction method and chemical reaction numerical analysis were employed to examine the alterations in the state of chemical species associated with flame temperature, flame visual, and soot formation by mixing nitrogen, an inert gas, in the counterflow diffusion flame based on ethylene gas. The findings of the study suggest that as the mixing ratio of nitrogen increased, both the flame temperature and soot volume fraction decreased. Additionally, the area in which soot particles were distributed also decreased, and the volume fraction decrease rate declined when the mixing ratio increased by more than 30%. The mole fraction of the chemical species involved in soot growth also decreased. the chemical species associated with the HACA reaction were affected by variations in the hydrocarbon fuel ratio, and the chemical species related to the odd carbon path were confirmed to be affected by the flame temperature as well as the hydrocarbon fuel ratio.

Influence of kneading ratio on the binding interaction of coke aggregates on manufacturing a carbon block

  • Kim, Jong Gu;Kim, Ji Hong;Bai, Byong Chol;Choi, Yun Jeong;Im, Ji Sun;Bae, Tae-Sung;Lee, Young-Seak
    • Carbon letters
    • /
    • v.28
    • /
    • pp.24-30
    • /
    • 2018
  • Coke aggregates and carbon artifacts were produced to investigate the interactions of coke and pitch during the kneading process. In addition, the kneading ratio of the coke and binder pitch for the coke aggregates was controlled to identify the formation of voids and pores during carbonization at $900^{\circ}C$. Experiments and thermogravimetric analysis revealed that carbon yields were improved over the theoretical yield calculated by the weight loss of the coke and binder pitch; the improvement was due to the binding interactions between the coke particles and binder pitch by the kneading process. The true, apparent, and bulk densities fluctuated according to the kneading ratio. This study confirmed that an excessive or insufficient kneading ratio decreases the density with degradation of the packing characteristics. The porosity analysis indicated that formation of voids and pores by the binder pitch increased the porosity after carbonization. Image analysis confirmed that the kneading ratio affected the formation of the coke domains and the voids and pores, which revealed the relations among the carbon yields, density, and porosity.

Wear Particulate Matters and Physical Properties of ENR/BR Tread Compounds with Different Ratio of Silica and Carbon Black Binary Filler Systems

  • Ryu, Gyeongchan;Kim, Donghyuk;Song, Sanghoon;Lee, Hyun Hee;Ha, Jin Uk;Kim, Wonho
    • Elastomers and Composites
    • /
    • v.56 no.4
    • /
    • pp.234-242
    • /
    • 2021
  • The demand for truck bus radial (TBR) tires with enhanced fuel efficiency and wear resistance have grown in recent years. In addition, as the issue of particulate matter and air pollution increases, efforts are being made to reduce the generation of particulate matter. In this study, the properties of epoxidized natural rubber (ENR) containing a silica-friendly functional group were evaluated by considering it as a base rubber and varying the silica ratio in this binary filler system. The results showed that the wear resistance of the NR/BR blend compound decreased as the silica ratio increased. In contrast, the ENR/BR blend compound exhibited an increase in wear resistance as the silica ratio was increased. In particular, the ENR-50/BR blend compound showed the best wear resistance due to the presence of several epoxide groups. Furthermore, we observed that for tan 𝛿 at 60℃, higher epoxide content resulted in the higher Tg of the rubber, indicating a higher tan 𝛿 at 60℃. On the other hand, it was confirmed that increasing the silica ratio decreased the value of tan 𝛿 at 60℃ in all compounds. In addition, we measured the amount of wear particulate matters generated from the compound wear. These measurements confirmed that in the binary filler system, regardless of the filler type, the quantity of the generated wear particulate matters as the filler-rubber interaction increased. In conclusion, the silica filled ENR/BR blend compound exhibited the lowest generation of wear particulate matters.

Esterification of Fluoroethanol with Methacrylic Acid through Acid-resistant Poly(vinyl alcohol) Pervaporation Membranes (산저항성을 가진 PVA 투과증발막을 이용한 불화에탄올과 메타크릴산의 에스테르화 반응)

  • Kim Jeong-Hoon;Chang Bong-Jun;Lee Yong-Taek;Lee Soo-Bok
    • Membrane Journal
    • /
    • v.16 no.3
    • /
    • pp.230-234
    • /
    • 2006
  • This study discusses an esterification of trifluoroethanol (TFEA) with methacrylic acid (MA) using acid-resistant PVA pervaporation membrane. The acid-resistant PVA membranes, which were prepared via a thermal cross-linking reaction of PVA and EGDE were adopted in the esterification reaction. The effect of reaction conditions such as temperature, acid catalyst content, and initial molar ratio of TFEA/MA was investigated on the conversion of trifluoroethyl-methacrylate (TFEMA). It was found that TFEMA conversion increased with increasing the reaction temperature, the catalyst content, and the initial molar ratio. The economical conversion of TFEMA more than about 90% was obtained at the following reaction conditions: reaction temperature of $90^{\circ}C$, 2.5 wt% of catalyst and initial molar ratio of 1.7.