• 제목/요약/키워드: Chemical Process Control

검색결과 1,071건 처리시간 0.031초

Optimal Reaction Conditions for Minimization of Energy and Byproducts in a Poly(ethylene terephthalate) Process

  • Ha, Kyoung-Su;Rhee, Hyun-Ku
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1999년도 제14차 학술회의논문집
    • /
    • pp.248-251
    • /
    • 1999
  • The optimal reaction conditions are determined for a PET process, which consists of transesteriflcation, prepolymerization and polycondensation reactors in series. Based on the simulation results of the reactor system, we scrutinize the cause and effect between the reaction conditions and the final properties of the polymer product. We then select the process variables with significant influence on the properties of polymer as control variables and calculate the optimal reaction conditions by iterative dynamic programming (IDP) algorithm with constraints. A new reaction scheme incorporating reactions for by-products as well as three main reactions is considered in the constrained IDP method.

  • PDF

비정규 공정을 위한 공정관리도의 연구동향 분석 (Research Results and Trends Analysis on Process Control Charts for Non-normal Process)

  • 김종걸;김창수;엄상준;김형만;최성원;정동구
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2013년 춘계학술대회
    • /
    • pp.547-556
    • /
    • 2013
  • Control chart is most widely used in SPC(Statistical Process Control), Recently it is a critical issue that the standard control chart is not suitable to non-normal process with very small percent defective. Especially, this problem causes serious errors in the reliability procurement, such as semiconductor, high-precision machining and chemical process etc. Procuring process control technique for non-normal process with very small percent defective and perturbation is becoming urgent. Control chart technique in non-normal distribution become very important issue. In this paper, we investigate on research trend of control charts under non-normal distribution.

  • PDF

다축-다변량회귀분석 기법을 이용한 회분식 공정의 이상감지 및 통계적 제어 방법 (Fault Detection & SPC of Batch Process using Multi-way Regression Method)

  • 우경섭;이창준;한경훈;고재욱;윤인섭
    • Korean Chemical Engineering Research
    • /
    • 제45권1호
    • /
    • pp.32-38
    • /
    • 2007
  • 통계적인 공정 제어 기법을 회분식 공정에 적용하여, 일반적인 회분식 공정의 데이터를 통해 보다 빠르고, 손쉽게 공정의 상태를 진단할 수 있는 시스템을 구현해 보았다. 대표적인 회분식 공정의 하나인 반도체 식각공정과 반회분식 스타이렌-부타디엔 고무 생산 공정의 데이터를 이용하여 공정 변수와 공정의 상태간의 연관 관계를 규명할 수 있는 모델을 수립하였으며, 이 모델의 출력(output) 결과를 이용해 통계적 공정 제어 차트를 구성하고, 시간에 따른 공정의 추이를 분석해 이상을 판별해 보았다. 회분식 공정의 다축(multi-way) 데이터를 두개의 축으로 만드는 펼치기(unfolding) 과정을 거쳤으며, 모델링 방법으로는 Support Vector Regression 및 Partial Least Square 등의 다변량 회귀분석 방법을 이용하였다. 또한 에러차트 및 변수 기여도 차트(variable contribution chart)를 이용해 이상의 세기, 형태 및 이상 데이터에 대한 각 변수들의 기여도를 계산해 보았으며, 그 결과 이상의 발생 유무 및 발생시점 뿐만아니라 이상의 세기 및 원인 까지 진단해 볼 수 있는 우수한 성능을 보이는 것을 확인할 수 있었다.

비정규 공정에서의 누적합 관리도 적용에 관한 연구 (A Study on the Application of CUSUM Control Charts under Non-normal Process)

  • 김종걸;엄상준;최성원
    • 대한안전경영과학회:학술대회논문집
    • /
    • 대한안전경영과학회 2011년도 추계학술대회
    • /
    • pp.535-549
    • /
    • 2011
  • Control chart is most widely used in SPC(Statistical Process Control), Recently it is a critical issue that the standard control chart is not suitable to non-normal process with very small percent defective. Especially, this problem causes serious errors in the reliability procurement, such as semiconductor, high-precision machining and chemical process etc. Procuring process control technique for non-normal process with very small percent defective and perturbation is becoming urgent. Control chart technique in non-normal distribution become very important issue. In this paper, we investigate on research trend of control charts under non-normal distribution with very small percent defective and perturbation, and propose some variable-transformation methods applicable to CUSUM control charts in non-normal process.

  • PDF

Statistical process control of dye solution stream using spectrophotometer

  • Lee, Won-Jae;Cho, Gyo-Young
    • Journal of the Korean Data and Information Science Society
    • /
    • 제21권6호
    • /
    • pp.1289-1303
    • /
    • 2010
  • The need for statistical process control to check the performance of a process is becoming more important in chemical and pharmaceutical industries. This study illustrates the method to determine whether a process is in control and how to produce and interpret control charts. In the experiment, a stream of green dyed water and a stream of pure water were continuously mixed in the process. The concentration of the dye solution was measured before and after the mixer via a spectrophotometer. The in-line mixer provided benefits to the dye and water mixture but not for the stock dye solution. The control charts were analyzed, and the pre-mixer process was in control for both the stock and mixed solutions. The R and X-bar charts showed virtually all of the points within control limits, and there were no patterns in the X-bar charts to suggest nonrandom data. However, the post-mixer process was shown to be out of control. While the R charts showed variability within the control limits, the X-bar charts were out of control and showed a steady increase in values, suggesting that the data was nonrandom. This steady increase in dye concentration was due to discontinuous, non-steady state flow. To improve the experiment in the future, a mixer could be inserted into the stock dye tank. The mixer would ensure that the dye concentration of the stock solution is more uniform prior to entering the pre-mixer ow cell. Overall, this would create a better standard to judge the water and dye mixture data against as well.

통계적 분석기법을 이용한 공정 운전 향상의 방법 (Process operation improvement methodology based on statistical data analysis)

  • Hwang, Dae-Hee;Ahn, Tae-Jin;Han, Chonghun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 제어로봇시스템학회 1997년도 한국자동제어학술회의논문집; 한국전력공사 서울연수원; 17-18 Oct. 1997
    • /
    • pp.1516-1519
    • /
    • 1997
  • With disseminationof Distributed Control Systems(DCS), the huge amounts of process operation data could have been available and led to figure out process behaviors better on the statistical basis. Until now, the statistical modeling technology has been susally applied to process monitoring and fault diagnosis. however, it has been also thought that these process information, extracted from statistical analysis, might serve a great opportunity for process operation improvements and process improvements. This paper proposed a general methodolgy for process operation improvements including data analysis, backing up the result of analysis based on the methodology, and the mapping physical physical phenomena to the Principal Components(PC) which is the most distinguished feature in the methodology form traditional statistical analyses. The application of the proposed methodology to the Balst Furnace(BF) process has been presented for details. The BF process is one of the complicated processes, due to the highly nonlinear and correlated behaviors, and so the analysis for the process based on the mathematical modeling has been very difficult. So the statisitical analysis has come forward as a alternative way for the useful analysis. Using the proposed methodology, we could interpret the complicated process, the BF, better than any other mathematical methods and find the direction for process operation improvement. The direction of process operationimprovement, in the BF case, is to increase the fludization and the permeability, while decreasing the effect of tapping operation. These guide directions, with those physical meanings, could save fuel cost and process operator's pressure for proper actions, the better set point changes, in addition to the assistance with the better knowledge of the process. Open to set point change, the BF has a variety of steady state modes. In usual almost chemical processes are under the same situation with the BF in the point of multimode steady states. The proposed methodology focused on the application to the multimode steady state process such as the BF, consequently can be applied to any chemical processes set point changing whether operator intervened or not.

  • PDF

특성화고 '화학공정유지운영' 교과를 위한 조립형 액위제어 실험장치 및 체험활동과제 개발 (Development of an Assembly-type Liquid Level Control Experimental Equipment and a Hands-on Activity Task for Vocational High School 'Chemical Process Maintenance Operation' Subject)

  • 정은숙;이경택
    • 대한공업교육학회지
    • /
    • 제45권2호
    • /
    • pp.1-20
    • /
    • 2020
  • 이 연구의 목적은 화학공업을 공부하는 학생들이 액위제어를 쉽게 이해할 수 있도록 하기 위해, 조립형 액위제어 실험장치를 제작하고 이를 수업에 적용할 수 있는 체험활동과제를 개발하는 것이다. 이를 위해 2015 개정 교육과정 화학공업 실무과목에서 액위제어와 관련된 내용요소를 분석하여, 조립형 액위제어 실험장치를 활용하는 체험 활동과제를 개발하여 전문가 검증을 마친 후, 16차시의 체험활동과제를 S 마이스터고등학교 학생 19명에게 적용하였다. 이 연구에서 얻은 결과는 다음과 같다. 첫째, 기존 완성형 액위제어 실험장치를 분석하고, 이를 토대로 학생 수준에서 조립 가능하며 실습에 활용할 수 있는 새로운 조립형 액위제어 실험장치를 설계·제작하였다. 둘째. 2015 개정 교육과정의 NCS기반 '화학공정유지운영' 실무과목의 내용을 분석하여 액위제어와 관련된 학습 내용들을 추출하였다. 이 액위제어 관련 내용 중에서 공정 흐름도의 이해, 액위제어 실험장치 제작, 유량 측정, 액위제어 현상 확인 등의 실습을 위 조립형 액위제어 실험장치로 진행하여 액위제어 관련 내용을 체계적으로 학습할 수 있도록 하였다.

Optimization of filling process in RTM using genetic algorithm

  • Kim, Byoung-Yoon;Nam, Gi-Joon;Ryu, Ho-Sok;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • 제12권1호
    • /
    • pp.83-92
    • /
    • 2000
  • In resin transfer molding (RTM) process, preplaced fiber mat is set up in a mold and thermoset resin is injected into the mold. An important interest in RTM process is to minimize cycle time without sacrificing part quality or increasing cost. In this study, the numerical simulation and optimization process in filling stage were conducted in order to determine the optimum gate locations. Control volume finite element method (CVFEM) was used in this numerical analysis with the coordinate transformation method to analyze the complex 3-dimensional structure. Experiments were performed to monitor the flow front to validate simulation results. The results of numerical simulation predicted well the experimental results with every single, simultaneous and sequential injection procedure. We performed the optimization analysis for the sequential injection procedure to minimize fill time. The complex geometry of an automobile bumper core was chosen. Genetic algorithm was used in order to determine the optimum gate locations with regard to 3-step sequential injection case. These results could provide the information of the optimum gate locations in each injection step and could predict fill time and flow front.

  • PDF

Effect of Thermal Annealing on Nanoscale Thickness and Roughness Control of Gravure Printed Organic Light Emitting for OLED with PVK and $Ir(ppy)_3$

  • Lee, Hye-Mi;Kim, A-Ran;Kim, Dae-Kyoung;Cho, Sung-Min;Chae, Hee-Yeop
    • 한국정보디스플레이학회:학술대회논문집
    • /
    • 한국정보디스플레이학회 2009년도 9th International Meeting on Information Display
    • /
    • pp.1511-1514
    • /
    • 2009
  • Organic light emitting layer in OLED device was formed by gravure printing process in this work. Organic surface coated by gravure printing typically showed relatively bad uniformity. Thickness and roughness control was characterized by applying various mixed solvents in this work. Poly (N-vinyl carbazole) (PVK) and fact-tris(2-phenylpyridine)iridium($Ir(ppy)_3$) are host dopant system materials. PVK was used as a host and Ir(ppy)3 as green-emitting dopant. To luminance efficiency of the plasma treatment on etched ITO glass and then PEDOT:PSS spin coated. The device layer structure of OLED devices is as follow Glass/ITO/PEDOT:PSS/PVK+Ir(ppy)3-Active layer /LiF/Al. It was printed by gravure printing technology for polymer light emitting diode (PLED). To control the thickness multi-printing technique was applied. As the number of the printing was increased the thickness enhancement was increased. To control the roughness of organic layer film, thermal annealing process was applied. The annealing temperature was varied from room temperature, $40^{\circ}C$, $80^{\circ}C$, to $120^{\circ}C$.

  • PDF

화학공정 감시를 위한 함수연결연상 신경망 시스템 구현 (The Analysis of a Process Monitoring system based on Functional Link Associative Network)

  • 윤인섭;조재규;이동언;김용하;안성준
    • 한국가스학회지
    • /
    • 제7권3호
    • /
    • pp.24-31
    • /
    • 2003
  • 화학공장은 수많은 장치들로 구성되어 있고 매우 복잡한 구조를 가지고 있다. 특히 분산 제어 시스템(Distributed Control System, DCS)이나 공정 정보 시스템(Process Information System, PIS) 등을 설치하여 매분 또는 매초 단위로 공정 데이터를 얻고 있다. 화학공장의 경우, 데이터들의 방대한 양 뿐 만 아니라 데이터들간의 상호 연관성이 크고 재순환이나 화학 반응 등으로 인하여 막대한 계산량 및 비선형성을 지니기 때문에 효과적 분석에 곤란한 점이 있다. 따라서 본 연구에서는 함수연결연상 신경망을 이용하여 입력변수들을 확장함으로써 신경망의 비선형성 표현능력과 학습능력이 뛰어난 프로그램의 개발에 주안점을 두고 있다. REFA (Real Time Fault Analyzer)는 실시간으로 공정정보를 입력받은 후 입력값을 PC로 매핑하고, 이를 다시 역으로 매핑하여 입력값을 예측하여 공정을 감시하는 시스템으로 개발되었으며, Tennessee Eastman 공정에 적용해 우수성을 입증하였다.

  • PDF