• Title/Summary/Keyword: Chemical Process Control

Search Result 1,071, Processing Time 0.034 seconds

Process Control Using a Neural Network Combined with the Conventional PID Controllers

  • Lee, Moonyong;Park, Sunwon
    • Transactions on Control, Automation and Systems Engineering
    • /
    • v.2 no.2
    • /
    • pp.136-139
    • /
    • 2000
  • A neural controller for process control is proposed that combines a conventional multi-loop PID controller with a neural network. The concept of target signal based on feedback error is used for on-line learning of the neural network. This controller is applied to distillation column control to illustrate its effectiveness. The result shows that the proposed neural controller can cope well with disturbance, strong interactions, time delays without any prior knowledge of the process.

  • PDF

Rheological perspectives of industrial coating process

  • Kim, Sun-Hyung;Kim, Jae-Hong;Ahn, Kyung-Hyun;Lee, Seung-Jong
    • Korea-Australia Rheology Journal
    • /
    • v.21 no.2
    • /
    • pp.83-89
    • /
    • 2009
  • Coating process plays an important role in information technology such as display, battery, chip manufacturing and so on. However, due to complexity of coating material and fast deformation of the coating flow, the process is hard to control and it is difficult to maintain the desired quality of the products. Moreover, it is hard to measure the coating process because of severe processing conditions such as high drying temperature, high deformation coating flow, and sensitivity to the processing variables etc. In this article, the coating process is to be re-illuminated from the rheological perspectives. The practical approach to analyze and quantify the coating process is discussed with respect to coating materials, coating flow and drying process. The ideas on the rheology control of coating materials, pressure and wet thickness control in patch coating process, and stress measurement during drying process will be discussed.

Modern vistas of process control

  • Georgakis, Christos
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1996.10a
    • /
    • pp.18-18
    • /
    • 1996
  • This paper reviews some of the most prominent and promising areas of chemical process control both in relations to batch and continuous processes. These areas include the modeling, optimization, control and monitoring of chemical processes and entire plants. Most of these areas explicitly utilize a model of the process. For this purpose the types of models used are examined in some detail. These types of models are categorized in knowledge-driven and datadriven classes. In the areas of modeling and optimization, attention is paid to batch reactors using the Tendency Modeling approach. These Tendency models consist of data- and knowledge-driven components and are often called Gray or Hybrid models. In the case of continuous processes, emphasis is placed in the closed-loop identification of a state space model and their use in Model Predictive Control nonlinear processes, such as the Fluidized Catalytic Cracking process. The effective monitoring of multivariate process is examined through the use of statistical charts obtained by the use of Principal Component Analysis (PMC). Static and dynamic charts account for the cross and auto-correlation of the substantial number of variables measured on-line. Centralized and de-centralized chart also aim in isolating the source of process disturbances so that they can be eliminated. Even though significant progress has been made during the last decade, the challenges for the next ten years are substantial. Present progress is strongly influenced by the economical benefits industry is deriving from the use of these advanced techniques. Future progress will be further catalyzed from the harmonious collaboration of University and Industrial researchers.

  • PDF

MPC Based Feedforward Trajectory for Pulling Speed Tracking Control in the Commercial Czochralski Crystallization Process

  • Lee Kihong;Lee Dongki;Park Jinguk;Lee Moonyong
    • International Journal of Control, Automation, and Systems
    • /
    • v.3 no.2
    • /
    • pp.252-257
    • /
    • 2005
  • In this work, we propose a simple but efficient method to design a target temperature trajectory for pulling speed tracking control of the crystal grower in the Czochralski crystallization process. In the suggested method, the model predictive control strategy is used to incorporate the complex dynamic effect of the heater temperature on the pulling speed into the temperature trajectory design quantitatively. The feedforward trajectories designed by the proposed method were implemented on 200 mm and 300 mm silicon crystal growers in the commercial Czochralski process. The application results have demonstrated its excellent and consistent tracking performance of pulling speed along whole bulk crystal growth.

A new neural linearizing control scheme using radial basis function network (Radial basis function 회로망을 이용한 새로운 신경망 선형화 제어구조)

  • Kim, Seok-Jun;Lee, Min-Ho;Park, Seon-Won;Lee, Su-Yeong;Park, Cheol-Hun
    • Journal of Institute of Control, Robotics and Systems
    • /
    • v.3 no.5
    • /
    • pp.526-531
    • /
    • 1997
  • To control nonlinear chemical processes, a new neural linearizing control scheme is proposed. This is a hybrid of a radial basis function(RBF) network and a linear controller, thus the control action applied to the process is the sum of both control actions. Firstly, to train the RBF newtork a linear reference model is determined by analyzing the past operating data of the process. Then, the training of the RBF newtork is iteratively performed to minimize the difference between outputs of the process and the linear reference model. As a result, the apparent dynamics of the process added by the RBF newtork becomes similar to that of the linear reference model. After training, the original nonlinear control problem changes to a linear one, and the closed-loop control performance is improved by using the optimum tuning parameters of the linear controller for the linear dynamics. The proposed control scheme performs control and training simultaneously, and shows a good control performance for nonlinear chemical processes.

  • PDF

Development of Multi-Chemical Supply System for Semiconductor Wafer Cleaning Station

  • Chung, Myung-Jin;Song, Young-Wook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1309-1312
    • /
    • 2005
  • A multi-chemical supply system is developed and applied to a wet station, which uses the multi-chemical process in one bath. To control the concentration of two chemicals, control logic of a supply pump is programmed using the programable logic controller (PLC). By using the multi-chemical supply system, wet station with single bath is applied to cleaning process using multi chemicals such as buffed oxide etchant (BOE) and standard clean 1 (SC-1). The concentration of each chemical is measured in the bath to verify the multi-chemical supply system. The control range in the each chemical concentration is measured to 1.33weight% in NH4OH and 0.23weight% in H2O2. The multi-chemical supply system can be movable and usable as an independent module of fixed wet station. By simply midifying the PLC, a multi-chemical supply system can be developed for a wet station.

  • PDF

Control of dissolved Oxygen Concentration and Specific Growth Rate in Fed-batch Fermentation (유가식 생물반응기에서의 용존산소농도 및 비성장속도의 제어)

  • Kim, Chang-Gyeom;Lee, Tae-Ho;Lee, Seung-Cheol;Chang, Yong-Keun;Chang, Ho-Nam
    • Microbiology and Biotechnology Letters
    • /
    • v.21 no.4
    • /
    • pp.354-365
    • /
    • 1993
  • A novel control method with automatic tuning of PID controller parameters has been developed for efficient regulation of dissolved oxygen concentration in fed-batch fermentations of Escherichia coli. Agitation speed and oxygen partial pressure in the inlet gas stream were chosen to be the manipulated variables. A heuristic reasoning allowed improved tuning decisions from the supervision of control performance indices and it coule obviate the needs for process assumptions or disturbance patterns. The control input consisted of feedback and feedforword parts. The feedback part was determined by PID control and the feedforward part is determined from the feed rate. The proportional gain was updated on-line by a set of heuristics rules based on the supervision of three performance indices. These indices were output error covariance, the average value of output error, and input covariance, which were calculated on-line using a moving window. The integral and derivative time constants were determined from the period of output response. The specific growth rate was maintained at a low level to avoid acetic acid accumulation and thus to achieve a high cell density. The specific growthe rate was estimated from the carbon dioxide evolution rate. In fed-batch fermentation, the simutaneous control of dissolved oxygen concentration (at 0.2; fraction of saturated value) and specific growth rate (at 0.25$hr^{-1}$) was satisfactory for the entire culture period in spite of the changes in the feed rate and the switching of control input.

  • PDF

Major Control Techniques for Chemical and Gas Process Industries (화학 및 가스 공정산업에서 주요 공정제어 기술)

  • Yoo, Sung-Jin;Lee, Chang-Jun;Lee, Jong-Min
    • Journal of the Korean Institute of Gas
    • /
    • v.15 no.1
    • /
    • pp.1-8
    • /
    • 2011
  • There has been much research interest in developing processes for production and utilization of gas and novel renewable energy resources. For these process to be economically viable, implementation of a suitable process control technique is required. This paper reviews some of the major process control techniques that have been developed over the last 50 years. In addition, some control applications in gas process industries are also presented with future directions.

The Simulation and Control of the Reactive Distillation Process for Dimethylcarbonate(DMC) Production

  • Jang, Yong-Hee;Yang, Dae-Ryook
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2004.08a
    • /
    • pp.1215-1220
    • /
    • 2004
  • Reactive distillation (RD) is a combination process where both separation and reaction are considered simultaneously in a single vessel. This kind of combination to enhance the overall performance is not a new attempt in the chemical engineering areas. The recovery of ammonia in the classic Solvay process for soda ash of the 1860s may be cited as probably the first commercial application of RD. The RD system has been used for a long time as a useful process and recently the importance of the RD is enlarged more and more. In addition to that, the application fields of RD are diversely diverged. To make the most of the characteristic of RD system, we must decide the best operating condition under which the process shows the most effective productivity and should decide the best control algorithm which satisfies an optimal operating condition. Phosgene which is a highly reactive chemical is used for the production of isocyanates and polycarbonates. Because it has high reactivity and toxicity, its utilization is increasingly burdened by growing safety measures to be adopted during its production. Dimethyl Carbonate (DMC) was proposed as a substitute of phosgene because it is non-toxic and environmentally benign chemical. In this study, RD is used for DMC production process and the transesterification is performed inside of column to produce DMC. In transesterification, the methanol and ethylene carbonate (EC) are used as the reactants. This process use homogeneous catalyst and the azeotrope exists between the reactant and product. Owing to azeotrope, we should use two distillation columns. For this DMC production process, we can suggest two configurations. One is EC excess process and the other is methanol excess process. From the comparison of steady state simulation results where the Naphtali-Sandholm algorithm is used, it showed the better performance to use the methanol excess process configuration than EC excess process. Then, the dynamic simulation was performed to be based on the steady state simulation results and the optimal control system was designed. In addition to that, the optimal operating condition was suggested from previous results.

  • PDF

Computer aided chemical process control (전산기를 이용한 화학 공정 제어)

  • 김영철;노승백;김종득
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 1986.10a
    • /
    • pp.463-467
    • /
    • 1986
  • Here are summarized the trends and the problems of process control. And both the structure and the elements of digital computer based process control systems are also illuminated ; Briefly introduced the factors, of importance, influencing design strategy, and those to be considered when the process control is applied to physical systems using computer and computer-related instruments.

  • PDF