• Title/Summary/Keyword: Chemical Modification

Search Result 1,287, Processing Time 0.025 seconds

Induction and RAPD Analysis of Mutant Plants by Chemical Mutagens in Gentiana axillariflora Leveille (큰용담 (Gentiana axillarifloa L,) 기내배양에서 화학돌연변이원 처리에 의한 돌연변이주 유기 및 RAPD 분석)

  • 임정대;김명조;유창연
    • Korean Journal of Plant Tissue Culture
    • /
    • v.27 no.2
    • /
    • pp.89-94
    • /
    • 2000
  • In order to induce the mutants of Gentiana axillariflora Leveille, nodes were cultured on Schenk and Hilderbrandt (SH) medium containing TDZ 2 mg/L, BAP 2mg/L, GA3 0.5 mg/L and 0.1 mg/L NAA and each mutagen of ethylmethanesulfate (EMS), colchicine, N-methyl-N-nitrosourea (MNU), and sodium azide (NaN$_3$) through filtration. Comparision of morphological characteristics and survival rate in each mutant plants differed depending on mutagen sources and their concentrations. When EMS were treated on nodes, the regenerated plants was thin and albino, regenerated shoots appeared 'erectoides type' and get twisted. The case of colchicine were treated on nodes, the survival rate was from 84% to 97% at ail concentration after 30days but the rate of survival was decreased about 50% at 200 $\mu$M after 60days. The treatment of NaN$_3$200 $\mu$M was not survived. The survival rate was extremely decreased in MNU treatment at 500$\mu$M, according to concentrations two types of leaf characteristic were obtained. Type I of leaf characteristic was modified from oblanceolate to oboid at leaf shape and type II of leaf characteristic was modified from light green to dark violet at leaf color. RAPD analysis was carried out to check the genetic modification of regenerated plants by mutagen treatments. Three polymorphic DNA fragments out of thirty-seven obtained by RAPDs were observed in regenerated plants using 5 decamer primers.

  • PDF

Structural Analysis of Milled Wood Lignins Isolated From Aspen Wood (Populus tremuloides L.) Biotreated by Ceriporiopsis subvermispora (Ceriporiopsis subvermispora 처리에 의한 아스펜 목재 리그닌의 구조 변화)

  • Choi, Joon-Weon;Moon, Sung-Hee;Ahn, Sye-Hee;Choi, Don-Ha;Paik, Ki-Hyun
    • Journal of the Korean Wood Science and Technology
    • /
    • v.33 no.6 s.134
    • /
    • pp.79-86
    • /
    • 2005
  • Aspen wood (Populus tremuloides, L.) was biotreated with Ceriporiopsis subvermispora for 1, 2, 4, and 6 weeks to observe the physical/chemical modification of wood components. Milled wood lignins (MWLs) isolated from each decayed wood were analyzed by gel permeation chromatography (GPC) and nitrobenzene oxidation (NBO). As fungal treatment was progressed, lignin contents continuously decreased up to 20% after 6-week treatment. The lignin polymer could be fragmented to low-molecular phenolics, which make an enhancement of alkali solubility. Holocellulose contents were not affected severely during the period of fungal treatment, only reduction of 5~6% compared to the control. Xylose contents were decreased gradually from 23.4% to 18% after 6 weeks, whereas alpha-cellulose remained almost unchanged. Gel permeation chromatography (GPC) indicates that molecular weight of lignin undergoes a slight decrement for 4 weeks of fungal treatment. Nitrobenzene oxidation revealed that total yield of NBO products of lignins were lowered ca 20% after fungal treatment. Sum of syringaldehyde and syringic acid are remarkably decreased. However, increment of sum of vanillin and vanillic acid was surprisingly observed. These results work as indirect evidence that a specific lignolytic reaction, maybe selective demethoxylaytion of S-lignin, can occur during fungal treatment of aspen wood by C. subvermispora.

The Cycling Performance of Graphite Electrode Coated with Tin Oxide for Lithium Ion Battery (리튬이온전지용 주석산화물이 도포된 흑연전극의 싸이클 성능)

  • Kang, Tae-Hyuk;Kim, Hyung-Sun;Cho, Won-Il;Cho, Byung-Won;Ju, Jeh-Beck
    • Journal of the Korean Electrochemical Society
    • /
    • v.5 no.2
    • /
    • pp.52-56
    • /
    • 2002
  • Tin oxide was coated on graphite particle by sol-gel method and an electrode with this material having microcrystalline structure for lithium ion battery was obtained by heat treatment in the range $400-600^{\circ}C$. The content of tin oxide was controlled within the range of $2.25wt\%\~11.1wt\%$. The discharge capacity increased with the content of tin oxide and also initial irreversible capacity increased. The discharge capacity of tin oxide electrode showed more than 350 mAh/g at the initial cycle and 300 mAh/g after the 30th cycle in propylene carbonate(PC) based electrolyte whereas graphite electrode without surface modification showed 140 mAh/g. When the charge and discharge rate was changed from C/5 to C/2, The discharge capacity of tin oxide and graphite electrode showed $92\%\;and\;77\%$ of initial capacity, respectively. It has been considered that such an enhancement of electrode characteristics was caused because lithium $oxide(Li_2O)$ passive film formed from the reaction between tin oxide and lithium ion prevented the exfoliation of graphite electrode and also reduced tin enhanced the electrical conduction between graphite particles to improve the current distribution of electrode.

Alkylation of Benzene with Propene and Isopropanol on the β-zeolites (제올라이트 베타 상에서 프로펜과 이소프로판올에 의한 벤젠의 알킬화 반응)

  • Choi, Ko-Yeol
    • Applied Chemistry for Engineering
    • /
    • v.10 no.6
    • /
    • pp.895-901
    • /
    • 1999
  • The acid characteristics of ${\beta}$-zeolites was modified by the different calcination conditions in order to remove template and the post-treatments such as ammonium ion exchange and HCl treatment. Alkylation of benzene with propene and isopropanol was carried out over the catalysts to investigate the effect of acid characteristics on the selectivity to cumene in this reaction. The $Br{\ddot{o}}nsted$ acidity(IR $3610cm^{-1}$ band) of ${\beta}$-zeolite was significantly reduced by a deep bed calcination compared to that of ${\beta}$-zeolite calcined in a shallow bed. Moreover, extraframework aluminum species which did not show acidity were produced by the framework dealumination on the deep bed calcined ${\beta}$-zeolite. $Br{\ddot{o}}nsted$ acidity of deep bed calcined ${\beta}$-zeolite was significantly recovered by ammonium ion exchange, however, it was partially recovered by a weak HCl treatment. It was found that the framework aluminum as well as the extraframework aluminum were extracted by a strong HCl treatment. The selectivity to cumene was shown to be about 95% on the shallow bed calcined ${\beta}$-zeolite, however, it decreased to 90% on the deep bed calcined one. The post-treatment such as ammonium exchange and weak HCl treatment enhanced the selectivity to cumene up to 93% by the partial recovery of $Br{\ddot{o}}nsted$ acidity. Propene was proved to be a good alkylating agent for the selectivity to cumene compared to isopropanol.

  • PDF

Current Research on Nanocellulose-Reinforced Nanocomposites (Nanocellulose를 이용한 나노복합재의 최근 연구 동향)

  • Cho, Mi-Jung;Park, Byung-Dae
    • Journal of the Korean Wood Science and Technology
    • /
    • v.38 no.6
    • /
    • pp.587-601
    • /
    • 2010
  • This review attempted to overview characteristics of nanocellulose from various sources, its isolation methods, and properties of nanocellulose-based nanocomposites. Currently, nanocelluloses could be obtained from a variety of cellulose sources, including wood pulp, tunicate, bacterial cellulose etc., and are isolated by various ways such as chemical, physical, or biological methods. The length and width of nanocellulose is in the range of 100~300 nm long and 5~50 nm wide although characteristics of nanocellulose shows a wide variability, depending on sources and isolation method. Nanocellulose is also being used as a reinforcement in the nanocomposites via various methods. Many water soluble polymers were reinforced by the incorporation of nanocellulose, which significantly improves tensile and storage moduli of the nanocomposites. In order to be used for hydrophobic polymers, the surface of nanocellulose was modified. Even though there is a significant progress in the utilization of nanocellulose as a reinforcement of polymers, further research is required to find a niche market of nanocellulose-reinforced nanocomposites. In addition, isolation methods of producing the nanocellulose in a large quantity for commercial applications should be developed to extend the application of nanocellulose-based bio-nanocomposites in future.

Quality standard of Pleurotus ostreatus in a market and changes of mushroom quality during storage (유통 느타리버섯의 등급별 품질규격 및 저장기간별 품질 변화)

  • Lee, Chan-Jung;Oh, Jin-A;Cheong, Jong-Chun;Jhune, Chang-Sung;Moon, Ji-Won;Kong, Won-Sik;Suh, Jang-Sun
    • Journal of Mushroom
    • /
    • v.11 no.4
    • /
    • pp.287-291
    • /
    • 2013
  • This study was carried out to improve standardization of agricultural products and investigate quality changes during storage at different treatments. The standardization does much to improve merchantable quality, distribution efficiency and fair dealings by shipping of the standard agricultural products. Therefore, modification of these standards is required to fit farmhouse situations. Average pileus diameter and thickness of A grades was 38.9 mm and 4.5 mm at shelf culture and 22.2 mm and 3.9 mm at bottle culture. Average stipe length of A grades was 49.6 mm at shelf culture and 66.7 mm at bottle culture, and stipes thick was the highest in A grades of shelf culture. The diameter of pileus of Pleurotus ostreatus stored for 14 days at $4^{\circ}C$ and $10^{\circ}C$ showed no significant difference. but the thickness of pileus decreased rapidly after 7 days. L-value and hardness of stipes and pileus were higher at shelf culture than bottle culture.

Surface Modification of Proton Exchange Membrane by Introduction of Excessive Amount of Nanosized Silica (과량 실리카 도입을 통한 고분자 전해질막 표면 개질)

  • Park, Chi Hoon;Kim, Ho Sang;Lee, Young Moo
    • Membrane Journal
    • /
    • v.24 no.4
    • /
    • pp.301-310
    • /
    • 2014
  • In this study, the silica nanoparticles were considerably chosen to improve a dimensional stability, proton transport and electrochemical performance of the resulting inorganic-organic nanocomposite membranes. For this purpose, hydrophobic silica (Aerosil$^{(R)}$ 812, Degussa) and hydrophilic silica (Aerosil$^{(R)}$ 380, Degussa) nanoparticles were, respectively, introduced into a Sulfonated poly(arylene ether sulfone) (SPAES) polymer matrix. The $SiO_2$ particles are evenly dispersed in a SPAES matrix by the aid of a non-ionic surfactant (Pluronics$^{(R)}$ L64). A $SiO_2$ content plays an important role in membrane microstructures and membrane properties such as proton conductivity and water uptake. Therefore, to study nanocomposite membranes with excessive amount of silica, the content of silica nanoparticles were increased up to 5 wt%. Interestingly, a hydrophobic $SiO_2$ containing nanocomposite membrane showed better electrochemical performance (29% higher than pristine SPAES) despite of low proton conductivity due to its adhesive properties with a catalyst layer in a single cell test. All the silica-SPAES membranes exhibited better performance than a pristine SPAES membrane.

Purification and Characterization of Endoinulase from Streptomyces sp. S56 (Streptomyces sp. S56이 생산하는 Endoinulase의 정제 및 특성)

  • 김수일;하영주
    • Microbiology and Biotechnology Letters
    • /
    • v.20 no.5
    • /
    • pp.551-558
    • /
    • 1992
  • The extracellular endoinulase from Streptomyces sp. 556 was purified and characterized, The culture broth was fractionated by ammonium sulfate saturation followed by DEAE-cellulose column chromatography and 5ephadex G-200 gel filtration, The ultimately purified fraction revealed a single band in 7.5% polyacrylamide gel electropherogram. The purified enzyme showed the maximal activity at pH 5.5-6.0 and $50^{\circ}C$, but lost 93% of inulase activity after 30 min incubation at $55^{\circ}C$ . The essen.tial amino acid residue for catalytic activity appeared to be tryptophan. This endo inulase was activated by $Mn^{2+}$, whereas inactivated by $Ag^{+}$, $Hg^{+}$, $Cu^{2+}$, $Zn^{2+}$, $Fe^{3+}$ and $Mo^{6+}$ EDTA and 8-hydroxyquinoline inhibited the enzyme so that the enzyme was considered to be a metalloenzyme. The Km value for inulin was 0.287 mM, and no invertase or $\alpha$-glucosidase activity was found in the enzyme.

  • PDF

Transfection of Mesenchymal Stem Cells with the FGF-2 Gene Improves Their Survival Under Hypoxic Conditions

  • Song, Heesang;Kwon, Kihwan;Lim, Soyeon;Kang, Seok-Min;Ko, Young-Guk;Xu, ZhengZhe;Chung, Ji Hyung;Kim, Byung-Soo;Lee, Hakbae;Joung, Boyoung;Park, Sungha;Choi, Donghoon;Jang, Yangsoo;Chung, Nam-Sik;Yoo, Kyung-Jong;Hwang, Ki-Chul
    • Molecules and Cells
    • /
    • v.19 no.3
    • /
    • pp.402-407
    • /
    • 2005
  • Bone marrow mesenchymal stem cells (MSCs) have shown potential for cardiac repair following myocardial injury, but this approach is limited by their poor viability after transplantation. To reduce cell loss after transplantation, we introduced the fibroblast growth factor-2 (FGF-2) gene ex vivo before transplantation. The isolated MSCs produced colonies with a fibroblast-like morphology in 2 weeks; over 95% expressed CD71, and 28% expressed the cardiomyocyte-specific transcription factor, Nkx2.5, as well as ${\alpha}$-skeletal actin, Nkx2.5, and GATA4. In hypoxic culture, the FGF-2-transfected MSCs (FGF-2-MSCs) secreted increased levels of FGF-2 and displayed a threefold increase in viability, as well as increased expression of the anti-apoptotic gene, Bcl2, and reduced DNA laddering. They had functional adrenergic receptors, like cardiomyocytes, and exposure to norepinephrine led to phosphorylation of ERK1/2. Viable cells persisted 4 weeks after implantation of $5.0{\times}10^5$ FGF-2-MSCs into infarcted myocardia. Expression of cardiac troponin T (CTn T) and a voltage-gated $Ca^{2+}$ channel (CaV2.1) increased, and new blood vessels formed. These data suggest that genetic modification of MSCs before transplantation could be useful for treating myocardial infarction and end-stage cardiac failure.

Performance Evaluation of Bio-Composites Composed of Acetylated Kenaf Fibers and Poly(lactic acid) (PLA) (아세틸화 케나프 섬유와 폴리락트산으로 구성된 바이오복합재료의 물성 평가)

  • Chung, T.J.;Lee, B.H.;Lee, H.J.;Kwon, H.J.;Jang, W.B.;Kim, H.J.;Eom, Y.G.
    • Elastomers and Composites
    • /
    • v.46 no.3
    • /
    • pp.195-203
    • /
    • 2011
  • Eco-friendly materials or bio-composites were made with poly(lactic acid) (PLA) as matrix polymer and kenaf fibers as filler. Also, acetylated kenaf fibers and compatibilizer were adopted in order to improve the interfacial adhesion between fiber and polymer. In this study, the effect of chemical modification and compatibilizer on the mechanical-viscoelastic and morphology properties of the bio-composites was discussed. The hydrophobic fibers by acetylation were known to show better interfacial bonding with the matrix polymer and resulted in improved performance and morphology. Viscoelastic property and glass transition temperature, however, were not nearly enhanced.