• Title/Summary/Keyword: Chemical Mixing

Search Result 1,493, Processing Time 0.032 seconds

Morphology and mechanical properties of LDPE/PS blends prepared by ultrasound-assisted melt mixing

  • Ryu, Joung Gul;Kim, Hyungsu;Kim, Myung Ho;Lee, Jae Wook
    • Korea-Australia Rheology Journal
    • /
    • v.16 no.3
    • /
    • pp.147-152
    • /
    • 2004
  • Ultrasound-assisted melt mixing was applied to blending polystyrene (PS) and low density polyethylene(LDPE). The influence of the ultrasonic irradiation on the morphology and mechanical properties of the blends was investigated. It was observed that the domain sizes of the blend were significantly reduced and phase stability was well sustained even after a thermal treatment. Such morphological feature was consistent with the improvements in mechanical performance of the blends. The desirable results of ultrasonic compatibilization are mainly attributed to the in-situ formation of PS-LDPE copolymers as confirmed by a proper separation experiment. An important relationship between ultrasonic irradiation time and mechanical properties is revealed and an issue on the thermal stability of the blend is discussed.

Evolution of phase morphology and in-situ compatibilization of polymer blends during ultrasound-assisted melt mixing

  • Kim, Hyungsu;Ryu, Joung-Gul;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • v.14 no.3
    • /
    • pp.121-128
    • /
    • 2002
  • A series of thermoplastic polymers and their blends were melt-processed with high intensity ultrasonic wave in an intensive mixer. For the effective transfer of ultrasonic energy, an experimental apparatus was specially designed so that polymer melt can directly contact with ultrasonic horn. It was observed that significant variations in the rheological properties of polymers occur due to the unique action of ultrasonic wave without any aid of chemical additives. It was also found that the direct sonication on immiscible polymer blends in melt state reduces the domain sizes considerably and stabilizes the phase morphology of the blends. The degree of compatibilization was strongly affected by viscosity ratio of the components and the morphology was stable after annealing in properly compatibilized blends. It is suggested that ultrasound assisted melt mixing can lead to in-situ copolymer formation between the components and consequently provide an effective route to compatibilize immiscible polymer blends.

Numerical analysis of internal flow and mixing performance in polymer extruder II: twin screw element

  • Kim, Nak-Soo;Kim, Hong-Bum;Lee, Jae-Wook
    • Korea-Australia Rheology Journal
    • /
    • v.18 no.3
    • /
    • pp.153-160
    • /
    • 2006
  • We analyzed the non-Newtonian and non-isothermal flow with Carreau-Yasuda viscosity model in co-rotating and counter-rotating twin screw extruder systems. The mixing performances with respect to the screw speed, the screw pitch, and the rotating direction have been investigated. The dynamics of mixing was studied numerically by tracking the motions of particles. The extent of mixing was characterized in terms of the deformation rate, the residence time distribution, and the average strain. The results showed that the high screw speed decreases the residence time but increases the deformation rate. Small screw pitch increases the residence time. It is concluded that the high screw speed increases the dispersive mixing performance, while the small screw pitch increases the distributive mixing performance. Co-rotating screw extruder has the better conveying performance and the distributive mixing performance than counter-rotating screw extruder with the same screw speed and pitch. Co-rotating screw extruder developed faster transport velocity and it is advantageous the flow characteristics to the mixing that transfers polymer melt from one barrel to the other barrel.

Multistep Quantum Master Equation Theory for Response Functions in Four Wave Mixing Electronic Spectroscopy of Multichromophoric Macromolecules

  • Jang, Seog-Joo
    • Bulletin of the Korean Chemical Society
    • /
    • v.33 no.3
    • /
    • pp.997-1008
    • /
    • 2012
  • This work provides an alternative derivation of third order response functions in four wave mixing spectroscopy of multichromophoric macromolecular systems considering only single exciton states. For the case of harmonic oscillator bath linearly and diagonally coupled to exciton states, closed form expressions showing all the explicit time dependences are derived. These expressions can provide more solid physical basis for understanding 2-dimensional electronic spectroscopy signals. For more general cases of system-bath coupling, the quantum master equation (QME) approach is employed for the derivation of multistep time evolution equations for Green function-like operators. Solution of these equations is feasible at the level of 2nd order non-Markovian QME, and the new approach can account for inter-exciton coupling, dephasing, relaxation, and non-Markovian effects in a consistent manner.

A Numerical Study on NOx Emission of the Swirl Premixed burner for Several Chemical Reaction Mechanisms (스월 예혼합 버너의 화학반응식에 따른 NOx 특성에 대한 수치적 연구)

  • Cho, Cheonhyeon;Baek, Gwangmin;Sohn, Chae Hoon;Cho, Ju Hyung;Kim, Han Seok
    • 한국연소학회:학술대회논문집
    • /
    • 2012.11a
    • /
    • pp.133-135
    • /
    • 2012
  • This study presents the prediction of NOx and mixing characteristics with several chemical reaction mechanisms of methane in EV burner of double cone. Experimental results are compared with numerical results for validation. Mixing characteristics are analyzed at monitoring points based on the modified unmixedness. The mixing characteristics were improved in a certain case, the lance injection case. In 1-step reaction case, inside of the cone, flame was formed and lots of NOx was generated because the fuel injected from the lance was overestimated. In 2-step reaction case, numerical results showed a good agreement with experimental results in a qualitative manner.

  • PDF

Recovery of ultrafine particles from Chemical-Mechanical Polishing wastewater discharged by the semiconductor industry

  • Tu, Chia-Wei;Wen, Shaw-Bing;Dahtong Ray;Shen, Yun-Hwei
    • Proceedings of the IEEK Conference
    • /
    • 2001.10a
    • /
    • pp.715-718
    • /
    • 2001
  • This study uses traditional alum coagulation and sedimentation process to treat CMP wastewater from cleaning after polishing. The primary goal is to successfully recycle both solid fines and water for semiconductor manufacturing. Results indicated that CMP wastewater may be successfully treated to recover clean water and fine particles by alum coagulation. The optimum operating conditions for coagulation are as fellowing: alum dosage of 10 ppm, pH at 5, rapid mixing speed at 800 rpm, 5 min rapid mixing time, and long slow mixing time. The treated water with low turbidity and an average residual aluminum ion concentration of 0.23 ppm may be considered for reuse. The settled sludge after alum coagulation contains mainly SiO$_2$particle with a minor content of aluminum (1.7 wt%) may be considered as raw materials for glass and ceramic industry.

  • PDF

Acoustic Studies on Different Binary Liquid Mixtures of LIX Reagents with Different Diluents

  • Kamila, Susmita
    • Journal of the Korean Chemical Society
    • /
    • v.56 no.5
    • /
    • pp.548-555
    • /
    • 2012
  • Ultrasonic velocity and density measurements have been undertaken for a number of binary liquid mixtures involving different commercial solvent extractants, LIX reagents. The binary mixtures under investigation have been classified under two categories such as polar-polar, and polar-non-polar types. Different theories and relations such as Schaaff's Collision Factor Theory (CFT), Nomoto's relation (NOM), and Van Dael & Vangeel ideal mixing relation (IMR) have been used to evaluate the velocity theoretically for all these binary systems. The relative merits of afore-mentioned theories and relations compared to experimental values of velocity have been discussed in terms of percentage variations. However, the CFT and Nomoto's relation show better agreement with the experimental findings than the ideal mixing relation for all the systems under investigation.

Thermodynamic Properties of $NiFe_2O_4-NiFe_2O_4$ Spinel Solid Solution

  • 박봉훈;김동수
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.8
    • /
    • pp.939-942
    • /
    • 1999
  • The tie lines delineating ion-exchange equilibria between NiFe2O4-NiCr2O4 spinel solid solution and Fe2O3-Cr2O3 corundum solid solution were determined at 900, 1000, and 1200 ℃ by electron microprobe and energy dispersive X-ray analysis of oxide phases, using the flux growth technique. Activities of the spinel components were calculated from the tie lines, assuming Temkin's ideal mixing in the corundum solid solution. The spinel phase could be expressed by a regular solution with negative deviations from ideality. The Gibbs free energies of mixing for spinel solid solution were discussed in terms of the cation distribution model, based on site preference energies and assuming random mixing on both tetrahedral and octahedral sites.

SPECTROSCOPIC STUDY ON RED GIANTS IN GLOBULAR CLUSTERS (구상성단 거성들의 분광 연구)

  • LEE SANG-GAK
    • Publications of The Korean Astronomical Society
    • /
    • v.15 no.spc1
    • /
    • pp.15-30
    • /
    • 2000
  • A large scatter of the chemical abundances among globular cluster red giants has been observed. Especially the chemical elements C, N, O, Na, Mg, and Al vary form star to star within globular clusters. Except for $\omega$ Cen and M22, most globular clusters could be considered to be monometallic of their iron peak elements within error ranges. The variations in light elements among globuar cluster giants appear much more pronounced than in field halo giants of comparable Fe-peak metallicity. It has been found that in general the nitrogen abundance is anticorrelated with both carbon and oxygen, while it is correlated with Na and AI. These intracluster abundance inhomogeneities can be interpreted either by mixing of nucleosythesized material from the deep stellar interior during the red giant branch phase of evolution or by inhomogeneities of primordially processed material, from which the stars were formed. The simple way of distingushing between two senarios is to obtain the element abundances of main-sequence stars in globular clusters, which are too faint for high resolution spectroscopic studies until now. Both 'evolutionary' and 'primodial' origins are accepted for explanations of abundance variations among red giants and CN-CH anticorrelations among main-sequence stars in globular clusters. This paper reviews chemical abundances of light elements among globular cluster giants, with brief reviews of cannonical stellar evolution of low mass stars after main-sequence and deep mixing for abundance variations of cluster giants, and a possible connection between deep mixing and second parameter.

  • PDF