• Title/Summary/Keyword: Chemical Milling

Search Result 257, Processing Time 0.031 seconds

A Study on the Light Cylinder Using Chemical Milling (케미컬 밀링을 이용한 실린더 경량화 연구)

  • Yoo Joon-Tae;Yoon Jong-Hoon;Jang Young-Soon;Yi Yeong-Moo;Kang Suk-Bong;Lee Jong-Woong
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.30 no.4 s.247
    • /
    • pp.451-456
    • /
    • 2006
  • The process for reducing the weight of the structure is chiefly performed by the machine processing. But, increasing the weight for strength of welding zone and geometrical defect are occurred in machine processing. In this study, chemical milling is applied to reduce the weight of the cylinder. Before chemical milling is applied to the cylinder, specimen testing is performed. After the specimen testing, NaOH 15% is selected to perform the chemical milling. After the chemical milling, the velocity of reagent is 0.0016 mm/min and the thickness of cylinder is about 2.4 mm after chemical milling.

Chemical Leaching of Non-Equilibrium Al(Fe-Co) Powder Produced by Rod Milling

  • Kim, Hyun-Goo
    • Journal of Powder Materials
    • /
    • v.10 no.5
    • /
    • pp.305-309
    • /
    • 2003
  • We report on the formation and chemical leaching of non-equilibrium $Al_{0.6}(Fe_{75}Co_{25})$ alloy produced by rod milling. X-ray diffractometry, transmission electron microscopy, differential scanning calorimetry, scanning electron microscopy, and vibrating sample magnetometry were used to characterize the as-milled and leached specimens. After 400 h, only the $Al_{0.4}Fe_{0.6}$ peak of the body-centered cubic type was present in the XRD pattern. The entire rod milling process could be divided into three different stages of milling: agglomeration, disintegration, and homogenization. The saturation magnetization, $M_s$ decreased with increased milling time, the $M_s$ of the powders before milling was about 113.8 emu/g, the $M_s$ after milling for 400 h was about 11.55 emu/g. Leaching of the Al in KOH of the Al at room temperature from the as-milled powders did not induce any significant change in the diffraction pattern. After the leached specimen had been annealed at $600^{\circ}C$ for 1 hour, the nanoscale crystalline phases were transformed into the bcc Fe, cubic Co, and $CoFe_2O_4$ phases. On cooling the specimen from 85$0^{\circ}C$, the degree of magnetization increased slightly, then increased sharply at approximately 364.8$^{\circ}C$, indicating that the bcc $Al_{0.4}Fe_{0.6}$ phase had been transformed to the Fe and Co phases.

NIR - a Tool for Evaluation of Milling Procedure

  • Gergely, Sziveszter;Handzel, Lidia;Zoltan, Andrea;Salgo, Andras
    • Proceedings of the Korean Society of Near Infrared Spectroscopy Conference
    • /
    • 2001.06a
    • /
    • pp.1125-1125
    • /
    • 2001
  • Micro-scale test methods are producing small-sample size where the conventional physical and chemical tests can not be used (high standard deviation, uncertain sampling conditions, low repeatability). Different small-scale test methods were developed recently for determination of physico-chemical, functional, rheological properties of wheat or wheat dough using miniaturized instruments with sophisticated sample preparation/handling and mechanics (RVA, 2 g mixograph, micro-Z-arm mixer, small-scale noodle maker, micro-baking method etc.). The small-scale methodologies can be used as basic research tools or as technology supported measurements and can be also essential in the early selection for quality traits in breeding programs. The milling as a sample preparation step is essential procedure providing good quality flour or semolina samples from small amount of grain (5-10 g) in a reproducible and reliable way. The aim of present study was to use NIR as quality control tool, and to evaluate the recently developed and manufactured micro-scale lab mill (FQC-2000) produced by Inter-Labor Co. Ltd., Hungary. The milling characteristics of the new instrument were compared to other laboratory mills and the effects of milling action on the chemical composition of fractions were analysed. The fractions were tested with both chemical and near infrared spectroscopic methods. The micro-scale milling resulted significantly different yields, particle size distributions and different fractions from compositional point of view. The near infrared spectra were sensitive enough to distinguish the fractions obtained by different milling procedures. Quantitative NIR calibration equations were developed and tested in order to measure the chemical composition of characteristic milling fractions. Special qualification procedure the PQS (Polar Qualification System) method was used for detecting the differences between fractions obtained by macro and micro-milling procedures. The results and the limitations of PQS method in this application will be discussed.

  • PDF

Design of cylinder using chemical milling (케미컬 밀링을 이용한 실린더 설계)

  • Lee, Jong-Woong;Yoo, Joon-Tae;Jang, Young-Soon;Yi, Yeong-Moo;Cho, Gwang-Rae
    • Proceedings of the KSME Conference
    • /
    • 2004.11a
    • /
    • pp.504-509
    • /
    • 2004
  • Chemical machining(CHM) is a special process which material removed by contact of strong etchant. The application as industrial process was started from aircraft industry after 2nd world war. Chemical milling, one of the CHM process, initially became commercial bussiness and it was called chem-mill. Even today, this process widely used to remove the material from aircraft wings and fuselage panel in aircraft industry. In this study, it is attempted to design the cylinder pattern which minimize the weight within the allowable stress using chemical milling.

  • PDF

Effect of Temperature and Surfactant on Crystallization of Al-Based Metallic Glass during Pulverization (분쇄 공정의 온도와 분산제 사용이 알루미늄계 금속유리의 결정화에 미치는 영향)

  • Tae Yang Kim;Chae Yoon Im;Suk Jun Kim
    • Korean Journal of Materials Research
    • /
    • v.33 no.2
    • /
    • pp.63-70
    • /
    • 2023
  • In this study, crystallization was effectively suppressed in Al-based metallic glasses (Al-MGs) during pulverization by cryo-milling by applying an extremely low processing temperature and using a surfactant. Before Al-MGs can be used as an additive in Ag paste for solar cells, the particle sizes of the Al-MGs must be reduced by milling. However, during the ball milling process crystallization of the Al-MG is a problem. Once the Al-MG is crystallized, they no longer exhibit glass-like behavior, such as thermoplastic deformation, which is critical to decrease the electrical resistance of the Ag electrode. The main reason for crystallization during the ball milling process is the heat generated by collisions between the particles and the balls, or between the particles. Once the heat reaches the crystallization temperature of the Al-MGs, they start crystallization. Another reason for the crystallization is agglomeration of the particles. If the initially fed particles become severely agglomerated, they coalesce instead of being pulverized during the milling. The coalesced particles experience more collisions and finally crystallize. In this study, the heat generated during milling was suppressed by using cryo-milling with liquid-nitrogen, which was regularly fed into the milling jar. Also, the MG powders were dispersed using a surfactant before milling, so that the problem of agglomeration was resolved. Cryo-milling with the surfactant led to D50 = 10 um after 6 h milling, and we finally achieved a specific contact resistance of 0.22 mΩcm2 and electrical resistivity of 2.81 μΩcm using the milled MG particles.

Effects of the Mixing of an Active Material and a Conductive Additive on the Electric Double Layer Capacitor Performance in Organic Electrolyte

  • Yang, Inchan;Kwon, Soon Hyung;Kim, Bum-Soo;Kim, Sang-Gil;Lee, Byung-Jun;Kim, Myung-Soo;Jung, Ji Chul
    • Korean Journal of Materials Research
    • /
    • v.25 no.3
    • /
    • pp.132-137
    • /
    • 2015
  • The effects of the mixing of an active material and a conductive additive on the electrochemical performance of an electric double layer capacitor (EDLC) electrode were investigated. Coin-type EDLC cells with an organic electrolyte were fabricated using the electrode samples with different ball-milling times for the mixing of an active material and a conductive additive. The ball-milling time had a strong influence on the electrochemical performance of the EDLC electrode. The homogeneous mixing of the active material and the conductive additive by ball-milling was very important to obtain an efficient EDLC electrode. However, an EDLC electrode with an excessive ball-milling time displayed low electrical conductivity due to the characteristic change of a conductive additive, leading to poor electrochemical performance. The mixing of an active material and a conductive additive played a crucial role in determining the electrochemical performance of EDLC electrode. The optimal ball-milling time contributed to a homogeneous mixing of an active material and a conductive additive, leading to good electrochemical performance of the EDLC electrode.

Formation and Chemical Leaching of a Non-Equilibrium Al(Fe-Cu) Alloy Powder produced by Rod-Milling (Rod Milling에 의해 제작된 비평형 Al(Fe-Cu) 합금 분말의 형성 및 Chemical Leaching)

  • 김현구;명화남
    • Journal of Powder Materials
    • /
    • v.9 no.5
    • /
    • pp.359-364
    • /
    • 2002
  • We report the structure, thermal and magnetic properties of a non-equilibrium $Al_{0.6}(Fe_{50}Cu_{50})_{0.4}$ alloy powder produced by rod milling and chemical leaching. An X-ray diffractometry(XRD), a transmission electron microscope(TEM), a differential scanning calorimeter(DSC), a vibrating sample magnetometer(VSM), and superconducting quantum interference device(SQUID) were utilized to characterize the as-milled and leaching specimens. The crystallite size reached a value of about 8.82 nm. In the DSC experiment, the peak temperatures and crystallization temperatures decreased with increasing milling time. The activation energy of crystallization is 200.5 kJ/mole for as-milled alloy powder. The intensities of the XRD peaks of as-milled powders associated with the bcc type $Al_{0.5}Fe_{0.5}$ structure formative at $350^{\circ}C$ sharply increase with increasing annealing temperature. Above $400^{\circ}C$, peaks alloted to $Al_{0.5}Fe_{0.5}$ and $Al_{5}Fe_{2}$ are observed. After annealing at $600^{\circ}C$ for 1h, the leached Ll specimen transformed into bcc $\alpha$-Fe and fcc Cu phases, accompanied by a change in the structural and magnetic properties. The saturation magnetization decreased with increasing milling time, and a value of about 8.42 emu/g was reached at 500 h of milling. The coercivity reached a maximum value of about 142.7 Oe after 500 h of milling. The magnetization of leached specimens as function of fields were higher at 5 K, and increased more sharply at 5 K than at 100 K.

A Physico-chemical Change of Dissolving Pulp by Dry Milling and Fractionation (건식분쇄와 분급에 의한 용해용 펄프의 특성변화)

  • Kim, Taeyoung;Lee, Songmin;Heo, Yongdae;Kim, Jinyoung;Joung, Yangjin
    • Journal of Korea Technical Association of The Pulp and Paper Industry
    • /
    • v.47 no.5
    • /
    • pp.23-32
    • /
    • 2015
  • In this study, chemical and physical changes of dissolving pulps which have similar viscosity by dry milling and fractionation were investigated. We used two types of dissolving pulp made from wood and cotton linter fiber, respectively. Dry milling was executed by knife cutter and pulp powders were fractionated by sieve shaker into 4 grades. We analyzed fiber properties, crystallinity index, viscosity, molecular weight of pulp sheet and powders. It was found that poly-dispersity index of cotton linter pulp was smaller than that of wood pulp, meaning that cotton pulp has more narrow molecular weight distribution. It was assumed that these were related to exposure times to chemical treatment which cut cellulose chains not evenly. At least 4 times of chemical treatments for wood pulp were executed and only two times of chemical treatments for cotton linter pulp were done. After dry milling average molecular weight and crystallinity index of cotton linter pulp powders were reduced and these were related to fines content and shape of pulp powders.

Optimization of Condition of Chemical Additives in Cu CMP Slurry (Cu CMP 슬러리에서 화학첨가제 조건의 최적화)

  • Kim, In-Pyo;Kim, Nam-Hoon;Lim, Jong-Heun;Kim, Sang-Yong;Kim, Chang-Il;Chang, Eui-Goo
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2003.07a
    • /
    • pp.304-307
    • /
    • 2003
  • Replacement of aluminum by copper for interconnections in the semiconductor industry has raised a number of important issues. The integration of copper interconnection can be carried out by CMP(chemical mechanical polishing) is used to planarize the surface topography. In this experiments, we evaluated the optimization of several conditions for chemical additives during Cu CMP process. It was presented that the main cause of grown particle size is tartaric acid. The particle size was in inverse propotion to a quantity of bead and the time of milling process. The slurry stabilizer and oxidizer have been shown to have very good effect by addition in later milling process.

  • PDF