• Title/Summary/Keyword: Chemical Mass Balance

Search Result 138, Processing Time 0.023 seconds

A Study on Heat and Mass Balance in a Coal Gasifier (석탄 가스화기 열 및 물질정산에 관한 연구)

  • Kim, Bong-Keun;Yoo, Jeong-Seok;Kim, You-Seok
    • 한국신재생에너지학회:학술대회논문집
    • /
    • 2007.11a
    • /
    • pp.424-428
    • /
    • 2007
  • In the current most tool using heat and mass balance in a coal gasifier is dependent on commercial code such as STANJAN, CHEMKIN. However, in order to keep the self-reliance technology, it is necessary to develop the original design tool available for comprehension and analysis on the spot. So in this study, its own heat and mass balance program is developed on the assumption that the process in a coal gasifier is adiabatic and quasi-equilibrium. The mass balance is calculated by using the chemical equilibrium principle. Also the heat and mass balance according to main operating factors such as temperature, pressure and O2/Coal ratio, was carried in this tool. This heat and mass balance was verified on the basis of the results simulated in STANJAN, commercial codes using similar logic.

  • PDF

Estimation of Source Contribution for PM10 by Chemical Mass Balance(CMB) in Busan

  • Jeon, Byung-Il;Lee, Young-Mi
    • Journal of Environmental Science International
    • /
    • v.17 no.4
    • /
    • pp.359-364
    • /
    • 2008
  • PM10 samples were collected from July 2007 to Oct. 2007 at Gwaebopdong(inland area) and Dongsamdong(coastal area), in Busan. This paper investigates the contribution of emission sources to PM10 mass in Busan. Source apportionment results derived from the chemical mass balance(CMB) method. A source profiles applied in this study is organized to minimize the collinearity among sources type via statistical method. Source profiles applied in this study utilized a measured value of fine particle directly sampled from metropolitan area such as Seoul and Incheon, After a CMB modeling, sulfate and nitrate related sources among those contributing to PM10 in Busan showed high contribution by 36.53% in Gwaebopdong and 42.02% in Dongsamdong.

Characterization of Inorganic Chemicals in Total Suspended Particulates and a Source Apportionment by Chemical Mass Balance Model (대기 분진의 무기 화학적 조성 분석과 Chemical Mass Balance에 의한 오염원 기여도 산출)

  • Seo, Young-Hwa;Koo, Ja-Kong
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.8 no.2
    • /
    • pp.112-120
    • /
    • 1992
  • Twenty four metal, nonmetal elements and 4 major anions in total suspended particulates (TSP) collected at two sites in Daejon city from october to december in 1991 by a Hi-vol sampler were thoroughly analyzed by Inductively Coupled Plasma/ Atomic Emission Spectrometry (ICP/AES) and Ion Chromatography (IC). These analyzed data were used to perform a receptor modeling using the Chemical Mass Balance (CMB) for the source apportionment of TSP sample. Approximately 60% TSP weight in industrial complex area was influenced by potential industrial sources and 25% was by heating fuels and automobile emissions, whereas a half of TSP in residential area was influenced by surrounding environment and more than 35% of TSP was influenced by heating fuels. The CMB model provided source apportionment results reasonably and scientifically with a minor limitation.

  • PDF

Mass Transfer Model and Coefficient on Biotrickling Filtration for Air Pollution Control (대기오염제어를 위한 생물살수여과법에서 물질전달 Model과 계수에 관한 연구)

  • Won, Yang-Soo;Jo, Wan-Keun
    • Korean Chemical Engineering Research
    • /
    • v.53 no.4
    • /
    • pp.489-495
    • /
    • 2015
  • A fundamental mathematical model for mass transfer processes has been used to understand the air pollution control process in biotrickling filtration and to evaluate the mass transfer coefficients of gas/liquid (trickling liquid), gas/solid (biomass) and liquid/solid based upon experimental results and mathematical model calculations for selected operating conditions. The mass transfer models for the utilization of the steady-state mass balance for gas/liquid, and dynamic mass balance model for gas/solid & liquid/solid in biotrickling filters were established and discussed. The mass transfer model considered the reactor to comprise finite sections, for each of which dynamic mass balances for gas/solid and liquid/solid system were solved by numerical analysis code (numerical iteration). To determine the mass transfer coefficients ($K_La$) of gas/liquid, gas/solid & liquid/solid in a biotrickling filter, the calculation results based upon mass balance equation was optimized to coincide with the experimental results for the selected operating conditions. Finally, this study contributed the development of experimental methods and discussed the mathematical model to determine the mass transfer coefficients in a biotrickling filtration for air pollution control.

Conceptual Design of 50 kW thermal Chemical-Looping Combustor and Analysis of Variables (열량기준 50kW급 매체순환식 가스연소기의 개념설계 및 변수해석)

  • 류호정;진경태
    • Journal of Energy Engineering
    • /
    • v.12 no.4
    • /
    • pp.289-301
    • /
    • 2003
  • To develop a chemical-looping combustion technology, conceptual design of 50 kW thermal chemical-looping combustor, which is composed of two interconnected pressurized circulating fluidized beds, was performed by means of mass and energy balance calculations. A riser type fast fluidized bed was selected as an oxidizer and a bubbling fluidized bed was selected as a reducer by mass balance for the chemical-looping combustor. Calculated values of bed mass, solid circulation flux, and reactor dimension by mass and energy balance calculations were suitable for construction and operation of chemical-looping combustor. It is concluded from the comparison of the design results and operating values of commercial circulating fluidized bed that the process outline is realistic. Moreover, the previous results support that oxygen carrier particle, NiO/bentonite, fulfills the conversion rates needed for the proposed design. The effects of system capacity, metal oxide content in a oxygen carrier particle, amount of steam input, gas velocity, and solid depth on design values were investigated and the changes in the system performance can be estimated by proposed design tool.

Purity assignment of 17β-estradiol by mass balance method

  • Lee, Hwa-Shim;Oh, Kwang-Hoon
    • Analytical Science and Technology
    • /
    • v.30 no.5
    • /
    • pp.226-233
    • /
    • 2017
  • In general, quantitative chemical analysis in various areas including food, the environment, in vitro diagnostics, etc., requires traceability in order to increase the reliability of the measurements. Measurement traceability is a property of an unbroken chain of comparisons relating an instrument's measurements to SI units. Purity analysis is the first process for establishing traceability to SI units in chemical measurements. The purpose of this study is to develop and validate a method of purity assignment for establishing the traceability of $17{\beta}$-estradiol measurements in an in vitro diagnostics field. The establishment of this method is very important as it can be applied to the development of CRM and to the analysis of the purity of other hormones. The method of assignment of the purity of $17{\beta}$-estradiol was developed using the mass balance method and was validated through participation in an International comparison. In the mass balance method, impurities are categorized into four classes as follows: total related structure impurities, water, residual organic solvents, and nonvolatiles/inorganics. In this study, total related structure impurities were characterized by a gas chromatography-flame ionization detector (GC-FID) and a high-performance liquid chromatography-ultraviolet (HPLC-UV) detector, water content was determined by a Karl-Fisher coulometer, and total residual solvents and nonvolatiles/inorganics were checked simultaneously by thermogravimetric analysis (TGA). The purity of the $17{\beta}$-estradiol was 985.6 mg/g and the expanded uncertainty was 2.1 mg/g at 95% confidence. The developed method can be applied to the development of certified reference materials, which play a critical role in traceability.

Purity assignment of 17α-hydroxyprogesterone by mass balance method to establish traceability in measurement

  • Lee, Hwa Shim;Park, Su Jin
    • Analytical Science and Technology
    • /
    • v.32 no.6
    • /
    • pp.225-232
    • /
    • 2019
  • Traceability establishment in chemical measurements is a like a linkage established through an unbroken chain from the measured results to the international system (SI) of units. The primary process for traceability establishment is the purity assignment of a target material to be measured. In this study, we studied the purity assignment of 17α-hydroxyprogesterone (17-OHP). The presence of 17-OHP is indicative of congenital adrenal hyperplasia (CAH) and it builds up due to the deficiency of 21-hydroxylase and 11β-hydroxylase enzyme in the human blood. The purity assignment of 17-OHP was performed by the mass balance method, in which the impurities are categorized into four classes: total related structural impurities, water, residual organic solvents, and nonvolatiles/inorganics. The total related structural impurities were characterized by HPLC-UV; water content was determined by Karl-Fisher coulometer; and the total residual solvents and nonvolatiles/inorganics were determined by TGA. The purity of 17-OHP from a commercial manufacturer was calculated as 993.30 mg/g, and the expanded uncertainty was 0.58 mg/g. The proposed method was validated by uncertainty evaluation and comparing with the actual value of purity.

Basic Design and Sensitivity Analysis of 3 MWth Chemical Looping Combustion System for LNG Combustion and Steam Generation (LNG 연소 및 스팀생산을 위한 3 MWth 급 매체순환연소 시스템의 기본설계 및 민감도 분석)

  • RYU, HO-JUNG;NAM, HYUNGSEOK;HWANG, BYUNG WOOK;KIM, HANA;WON, YOOSEOB;KIM, DAEWOOK;KIM, DONG-WON;LEE, GYU-HWA;BAEK, JEOM-IN
    • Journal of Hydrogen and New Energy
    • /
    • v.32 no.5
    • /
    • pp.374-387
    • /
    • 2021
  • Basic design of 3 MWth chemical looping combustion system for LNG combustion and steam generation was conducted based on the mass and energy balance and the previous reactivity test results of oxygen carrier particles. Process configuration including fast fluidized bed (air reactor), loop seal and bubbling fluidized bed (fuel reactor) was confirmed and their dimensions were determined by mass balance. Then, the external fluidized bed heat exchanger (FBHE) was adopted based on the energy balance to extract heat from the system. The optimum reactor design and operating condition was confirmed with sensitivity analysis by modifying system configuration based on the mass and energy balance.

Source Apportionment and the Origin of Asian Dust Observed in Korea by Receptor Modelling (CMB) (수용모델(CMB)을 이용한 한반도에서 관측된 황사의 발원지 추정과 기여도에 대한 연구)

  • Shin S.A.;Han J.S.;Kim S.D.
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.22 no.2
    • /
    • pp.157-166
    • /
    • 2006
  • Ambient TSP at four sites in Korea and soil samples from the source regions of Asian Dust in northern China were collected and analyzed for 15 metal components and 6 water-soluble ions to conduct a chemical mass balance (CMB). CMB receptor model was used to estimate the source contribution of TSP during the Asian Dust period, and the model results showed that China soil was the largest source contributor, accounting for 81% of TSP ($458.2{\mu}g/m^3$). Vehicle emission and geological sources contributed to about 8.8% and 4.4% of aerosol mass, followed by sea salt (1.5%) and secondary aerosol (2.9%). Fuel combustion and industrial process sources were found to be relatively minor contributors to TSP (${\leq}1%$). In addition to source contribution estimates, this study tried to identify the origin of Asian Dust observed in Korea. Among all 13 China soil profiles presented in this study, the most adoptable profile which can project the case well was selected and considered as the origin of the applied case.

Accurate Metabolic Flux Analysis through Data Reconciliation of Isotope Balance-Based Data

  • Kim Tae-Yong;Lee Sang-Yup
    • Journal of Microbiology and Biotechnology
    • /
    • v.16 no.7
    • /
    • pp.1139-1143
    • /
    • 2006
  • Various techniques and strategies have been developed for the identification of intracellular metabolic conditions, and among them, isotope balance-based flux analysis with gas chromatography/mass spectrometry (GC/ MS) has recently become popular. Even though isotope balance-based flux analysis allows a more accurate estimation of intracellular fluxes, its application has been restricted to relatively small metabolic systems because of the limited number of measurable metabolites. In this paper, a strategy for incorporating isotope balance-based flux data obtained for a small network into metabolic flux analysis was examined as a feasible alternative allowing more accurate quantification of intracellular flux distribution in a large metabolic system. To impose GC/MS based data into a large metabolic network and obtain optimum flux distribution profile, data reconciliation procedure was applied. As a result, metabolic flux values of 308 intracellular reactions could be estimated from 29 GC/ MS based fluxes with higher accuracy.