• Title/Summary/Keyword: Chemical Kinetic Mechanism

Search Result 433, Processing Time 0.024 seconds

Removal of reactive black 5 dye by using polyoxometalate-membrane

  • Topaloglu, Ali Kemal;Yildirim, Yilmaz
    • Membrane and Water Treatment
    • /
    • v.12 no.1
    • /
    • pp.23-35
    • /
    • 2021
  • A POM-membrane was fabricated by immobilizing a keggin type polyoxometalate (POM) H5PV2Mo10O40 onto the surface of microporous flat-sheet polymeric polyvinylidene fluoride (PVFD) membrane using a chemical deposition method. The POM-membrane was characterized by FT-IR, SEM and EDX to confirm existing of the POM onto the membrane surface. The POM-membrane was used to remove an anionic textile dye (Reactive Black 5 named as an RB5) from aqueous phases with a cross-flow membrane filtration and a batch adsorption system. The dye removal efficiency of the POM-membrane using the cross-flow membrane filtration system and the batch adsorption system was about 88% and 98%, respectively. The influence factors such as contact time, adsorbent dosage, pH, and initial dye concentration were investigated to understand the adsorption mechanism of the RB5 dye onto the POM-membrane. To find the best fitting isotherm model, Langmuir, Freundlich, BET and Harkins-Jura isotherm models were used to analyze the experimental data. The isotherm analysis showed that the Langmuir isotherm model was found to the best fit for the adsorption data (R2 = 0.9982, qmax = 24.87 mg/g). Also, adsorption kinetic models showed the pseudo second order kinetic model was found the best model to fit the experimental data (R2 = 0.9989, q = 8.29 mg/g, C0 = 15 ppm). Moreover, after four times regeneration with HNO3 acid, the POM-membrane showed high regenerability without losing dye adsorption capacity.

Kinetic Study on Nucleophilic Substitution of 1-Anthracenesulfonyl Chloride with Anilines (1-염화안트라센 술포닐의 치환아닐린과의 친핵성치환반응의 속도론적 연구)

  • Kim Hyong Tae;Yoh Soo Dong
    • Journal of the Korean Chemical Society
    • /
    • v.29 no.2
    • /
    • pp.88-97
    • /
    • 1985
  • 1-Anthracenesulfonyl chloride used as a substrate has been prepared from anthra-quinone, and its melting point ($124^{circ}C$) was confirmed to be considerably different from the literature value ($90^{circ}C$). Rates of nucleophilic substitution reactions of this substrate with some p-substituted anilines in dry acetone were determined by electroconductometric method, and their mechanism has been discussed. As a result, it has been found that these reactions proceed in parallel catalyzed by anilines together with noncatalyzed process, and that their catalytic activities are electrophilic. Judging from $Br{\phi}nsted\;{\beta}$ (0.77), Hammett ${\rho}$(-3.2), and activation parameters which were determined from the temperature dependence of noncatalyzed second order rate constants, it appears most appropriate that their mechanism should be discussed in terms of an associative $S_N2$ involving sulfonylammonium intermediate.

  • PDF

Heteroexpression and Functional Characterization of Glucose 6-Phosphate Dehydrogenase from Industrial Aspergillus oryzae

  • Guo, Hongwei;Han, Jinyao;Wu, Jingjing;Chen, Hongwen
    • Journal of Microbiology and Biotechnology
    • /
    • v.29 no.4
    • /
    • pp.577-586
    • /
    • 2019
  • The engineered Aspergillus oryzae has a high NADPH demand for xylose utilization and overproduction of target metabolites. Glucose-6-phosphate dehydrogenase (G6PDH, E.C. 1.1.1.49) is one of two key enzymes in the oxidative part of the pentose phosphate pathway, and is also the main enzyme involved in NADPH regeneration. The open reading frame and cDNA of the putative A. oryzae G6PDH (AoG6PDH) were obtained, followed by heterogeneous expression in Escherichia coli and purification as a his6-tagged protein. The purified protein was characterized to be in possession of G6PDH activity with a molecular mass of 118.0 kDa. The enzyme displayed maximal activity at pH 7.5 and the optimal temperature was $50^{\circ}C$. This enzyme also had a half-life of 33.3 min at $40^{\circ}C$. Kinetics assay showed that AoG6PDH was strictly dependent on $NADP^+$ ($K_m=6.3{\mu}M$, $k_{cat}=1000.0s^{-1}$, $k_{cat}/K_m=158.7s^{-1}{\cdot}{\mu}M^{-1}$) as cofactor. The $K_m$ and $k_{cat}/K_m$ values of glucose-6-phosphate were $109.7s^{-1}{\cdot}{\mu}M^{-1}$ and $9.1s^{-1}{\cdot}{\mu}M^{-1}$ respectively. Initial velocity and product inhibition analyses indicated the catalytic reaction followed a two-substrate, steady-state, ordered BiBi mechanism, where $NADP^+$ was the first substrate bound to the enzyme and NADPH was the second product released from the catalytic complex. The established kinetic model could be applied in further regulation of the pentose phosphate pathway and NADPH regeneration of A. oryzae to improve its xylose utilization and yields of valued metabolites.

Cinnamic Acid Derivatives IV, The Kinetics and Mechanism of the Hydrolysis of Cinnamylidene aniline Derivatives (신남산 유도체 Ⅳ, Cinnamylidene anilin 유도체의 가수분해 반응에 대한 메카니즘과 그 반응속도론적 연구)

  • Lee, Gi-Chang;Park, Su-In;Hwang, Yong-Hyeon;Lee, Gwang-Il;Choe, Bong-Jong;Jeong, Deok-Chae
    • Journal of the Korean Applied Science and Technology
    • /
    • v.8 no.1
    • /
    • pp.1-7
    • /
    • 1991
  • The kinetic of hydrolysis for cinnamylidene aniline derivatives has been investigated by ultraviolet spectrophotometry in 20% (v/v) dioxane - $H_2O$ at $25^{\circ}C$. A rate equation which can be applied over wide pH range was obtained. The substituent effects on cinnamylidene aniline derivatives were studied and the hydrolysis was facilitated by electron attracting group. Final products of the hydrolysis were cinnamaldehyde and aniline. From the rate equation, substituent effect and final products, the hydrolysis of cinnamylidene aniline derivatives was initiated by the neutral molecule of $H_2O$ which does not dissociate at below pH 9.0${\sim}$12.0, but proceeded by the hydrogen ion at above pH 5.0${\sim}$9.0.

Numerical study on extinction of premixed flames using local flame properties (국소화염특성을 고려한 예혼합화염의 소염특성에 관한 수치해석)

  • Jeong, Dae-Heon;Jeong, Seok-Ho;Cho, P.
    • Transactions of the Korean Society of Mechanical Engineers B
    • /
    • v.21 no.1
    • /
    • pp.125-131
    • /
    • 1997
  • The extinction of premixed flames under the influence of stretch is studied numerically. A wide range of fuel (hydrogen, ethylene, acetylene, methane, propane and methanol) and air mixtures are established in an opposed jet and their flame properties such as flame speed, flame thickness, thermal diffusivity, and stretch rate at extinction are computed. Computations are made using several chemical kinetic mechanism (Smooke, Kee et al. and Peters). The major result is that, in contrast to the various previous claims of extinction Karlovitz number varying over three orders of magnitude, it is found to be constant around two for all of the mixtures tested. That is, premixed flames are extinguished when the physical flow time decreases (due to increased stretch rate) to the point where it approximately equals the chemical reaction time. Here the relevant chemical reaction time is not the one computed using the one-dimensional flame properties as originally suggested in the formulation of Karlovitz number, but rather it is the one obtained using the stretched flame properties which fully reflect the effect of straining on the flame structure.

The pH Studies of Recombinant Acetohydroxy Acid Synthase from Tobacco

  • Choi, Jung-Do;Kim, Bok-Hwan;Yoon, Moon-Young
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.5
    • /
    • pp.627-632
    • /
    • 2003
  • The pH dependence of the kinetic parameters of recombinant acetohydroxy acid synthase catalyzed reaction was determined in order to obtain information about the chemical mechanism, particularly acid-base chemistry. The maximum velocity and V/K for pyruvate were bell-shaped with estimated pK values of 6.5-6.7 and 8.6-8.9, respectively. The maximum velocity and V/K for 2-ketobutyrate were also bell-shaped with estimated pK values of 6.6-7.0 and 8.4-8.6. The pH dependence of 1/Ki for 3-bromopyruvate, a competitive inhibitor of pyruvate, was also bell-shaped, giving pK values almost identical with those obtained for pyruvate. Since the same pK values were observed in the $pK_{i 3-bromopyruvate}$, V/K pH profiles and $V_{max}$ profiles, both enzyme groups must be in their optimum protonation state for efficient binding of reactants. These results reflect that two enzyme groups are necessary for binding of substrate and/or catalysis.

An NMR Study on Complexation of Ortho-Xylyl-17-Crown-5 with $^{7}Li\;and\;^{23}Na$ Ions in Acetonitrile

  • 윤신영;안상두;이조웅
    • Bulletin of the Korean Chemical Society
    • /
    • v.16 no.3
    • /
    • pp.265-269
    • /
    • 1995
  • Complexation of ortho-xylyl-17-crown-5 (X17C5) with alkali metal ions in acetonitrile was studied by 7Li and 23Na NMR spectroscopy. The complex formation constants of X17C5 with LiI, LiSCN, NaI, and NaSCN were determined by investigating the changes in the chemical shifts as a function of the concentration ratio of X17C5 to metal ion. It was found that X17C5 forms 1:1 complex with Li+ and Na+ ions and the log Kf's for the complexation with LiI, LiSCN, NaI, and NaSCN were determined to be 2.88, 2.43, 2.53, and 2.30, respectively. In particular, the kinetics of complexation of X17C5 with Na+ was investigated by the method of 23Na NMR lineshape analysis. Activation energies were determined from Arrhenius plot of the resultant rate constant data to be 25.4 kJ/mol for NaI and 15.1 kJ/mol for NaSCN. Other kinetic parameters were also calculated by employing the Eyring equation. The decomplexation rates measured were 1.82 × 104 M-1s-1 for NaI and 1.50 × 104 M-1s-1 for NaSCN. It is concluded that the decomplexation mechanism is predominantly a bimolecular cation exchange for both cases.

Kinetic and Theoretical Studies on Pyridinolysis of 2,4-Dinitrophenyl X-Substituted Benzoates: Effect of Substituent X on Reactivity and Mechanism

  • Um, Ik-Hwan;Kim, Eun-Hee;Im, Li-Ra;Mishima, Masaaki
    • Bulletin of the Korean Chemical Society
    • /
    • v.31 no.9
    • /
    • pp.2593-2597
    • /
    • 2010
  • Second-order rate constants ($k_N$) have been measured spectrophotometrically for reactions of 2,4-dinitrophenyl X-substituted benzoates (X = 4-MeO, H and 4-$NO_2$) with a series of Z-substituted pyridines in 80 mol % $H_2O$/20 mol % DMSO at $25.0{\pm}0.1^{\circ}C$. The Br${\o}$nsted-type plots exhibit downward curvature (e.g., $\beta_2$ = 0.89 ~ 0.96 when $pK_a$ < 9.5 while $\beta_1$ = 0.38 ~ 0.46 when $pK_a$ > 9.5), indicating that the reaction proceeds through a stepwise mechanism with a change in rate-determining step (RDS). The ${pK_a}^o$, defined as the $pK_a$ at the center of Br${\o}$nsted curvature, has been analyzed to be 9.5 regardless of the electronic nature of the substituent X in the benzoyl moiety. Dissection of $k_N$ into the microscopic rate constants $k_1$ and $k_2/k_{-1}$ ratio has revealed that $k_1$ is governed by the electronic nature of the substituent X but the $k_2/k_{-1}$ ratio is not. Theoretical calculations also support the argument that the electronic nature of the substituent X in the benzoyl moiety does not influence the $k_2/k_{-1}$ ratio.

Kinetic Studies on the Mechanism of Hydrolysis of ${\alpha}$-Nitrobenzaldehydephenylhydrazone (${\alpha}$-Nitrobenzaldehydephenylhydrazone의 가수분해에 대한 반응속도론적 연구)

  • Tae-Rin Kim;Won-Sik Choi
    • Journal of the Korean Chemical Society
    • /
    • v.22 no.1
    • /
    • pp.30-36
    • /
    • 1978
  • The kinetics of hydrolysis of ${\alpha}$-nitrobenzaldehydephenylhydrazone derivatives (p-$NO_2$, m-$NO_2$, p-Cl, p-$CH_3$) have been investigated by UV spectrometry in 25% dioxane-water at $25^{\circ}C$ and a rate equation which can be applied over wide pH range was obtained. From the rate equation and the effect of solvent, substituent and pKa on the rate equation, the following reaction mechanisms were proposed. Below pH 3.0 the hydrolysis of ${\alpha}$-nitrobenzaldehydephenylhydrazone proceeds by $S_N1$ mechanism, while above pH 4.0 the hydrolysis proceeds through 1,3-dipole ion mechanism. In the range of pH from 3.0 to 4.0 these two reactions occur competitively.

  • PDF

Nucleophilic Substitution Reactions of Benzoic Anhyrides with Aniline in Methanol-Acetonitrile Mixtures (메탄올-아세토니트릴 혼합용매에서 벤조산 무수물과 아닐린의 친핵성 치환반응)

  • Lee, Byung Choon;Shin, Young Kook;Lee, Seung Woo;Lee, Ik Choon;Lee, Won Heui
    • Journal of the Korean Chemical Society
    • /
    • v.41 no.2
    • /
    • pp.69-76
    • /
    • 1997
  • Kinetic studies for the nucleophilic substitution reactions of the benzoic anhydrides with anilines in methanol-acetonitrile mixtures at$35.0{\circ}C$have been carried out in order to elucidate the reaction mechanism. Individual rate constants$k_{XY}$and$k_{XZ}$were decided from the ratios of the reaction products for the competitive substitution reaction at either one of the two carbonyl carbons in benzoic anhydride. Transition state structure and reaction mechanism were elucidated by the Hammett$p_x,\;p_y$and$p_z$values and cross interaction constant$p_x\;p_y$and$p_zvalues. The reaction of the benzoic anhydride has been proposed to proceed by a frontside attack$S_N2 $mechanism with four-membered ring transition state from unusually large magnitude of the$ρ_X,\;ρ_{XY},\;ρ_{XZ}$and positive$p_Y$values.

  • PDF