• Title/Summary/Keyword: Chemical Kinetic Mechanism

Search Result 433, Processing Time 0.024 seconds

Kinetics and Mechanism of Pyridinolyses of Ethyl Methyl and Ethyl Propyl Chlorothiophosphates in Acetonitrile

  • Barai, Hasi Rani;Lee, Hai Whang
    • Bulletin of the Korean Chemical Society
    • /
    • v.34 no.11
    • /
    • pp.3372-3376
    • /
    • 2013
  • The kinetic studies on the reactions of ethyl methyl (2) and ethyl propyl (4) chlorothiophosphates with X-pyridines have been carried out in acetonitrile at $35.0^{\circ}C$. The free energy correlations with X show biphasic concave upwards with a break point at X = H (2) and 3-Ph (4), respectively. A stepwise mechanism with a rate-limiting leaving group expulsion from the intermediate is proposed based on the magnitudes of selectivity parameters for both substrates. The considerably large values of ${\beta}_X$ = 1.50(2) and 1.44(4) with strongly basic pyridines and relatively small values of ${\beta}_X$ = 0.43(2) and 0.36(4) with weakly basic pyridines are interpreted as a change of the attacking direction of the X-pyridines from a frontside to a backside attack toward the chloride leaving group.

Kinetics and Mechanism of the Pyridinolysis of Aryl Cyclopropanecarboxylates in Acetonitrile

  • Koh, Han-Joong;Kang, Suk-Jin;Kim, Cheol-Ju;Lee, Hai-Whang;Lee, Ik-Choon
    • Bulletin of the Korean Chemical Society
    • /
    • v.24 no.7
    • /
    • pp.925-930
    • /
    • 2003
  • Kinetic studies of the reaction of Z-aryl cyclopropanecarboxylates with X-pyridines in acetonitrile at 55.0 ℃ have been carried out. The reaction proceeds by a stepwise mechanism in which the rate-determining step is the breakdown of the zwitterionic tetrahedral intermediate, $T^{\pm}$. These mechanistic conclusions are drawn base on (i) the large magnitude of ρx and ρz, (ii) the positive sign of ρxz and the larger magnitude of ρxz than normal $S_N2$ processes, (iii) a small positive enthalpy of activation, Δ$H^≠$, and a large negative, Δ$S^≠$, and lastly (iv) adherence to the reactivity-selectivity principle (RSP) in all cases.

Solvolyses of N-Methyl-N-phenylcarbamoyl Chlorides with Electron Acceptor Substituents in A Queous Binary Mixtures

  • Gu, In Seon;An, Seon Gyeong;Yang, Yeol;Go, Han Jung;Choe, Mun Ho;Lee, Ik Chun
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.8
    • /
    • pp.842-846
    • /
    • 2001
  • Solvolyses of N-methyl-N-phenylcarbamoyl chlorides in aqueous binary mixtures of acetone, ethanol, methanol and in water, D2O, and 50% D2O-CH3OD are investigated at 25.0 $^{\circ}C.$ The Grunwald-Winstein plots of first-ord er rate constants for N-methyl-N-phenylcarbamoyl chlorides with YCl (based on 2-adamantyl chloride) show a dispersion phenomenon. The ring parameter (I) has been shown to give considerable improvement when it is added as an hI term to the original Grunwald-Winstein and extended Grunwald-Winstein correlations for the solvolyses of N-methyl-N-phenylcarbamoyl chlorides. This study has shown that the magnitude of l, m and h values associated with a change of solvent composition is able to predict the dissociative SN2 transition state. The kinetic solvent isotope effects determined in deuterated water are consistent with the proposed mechanism of the general base catalyzed and/or a dissociative SN2 mechanism channel for N-methyl-N-phenylcarbamoyl chlorides solvolyses.

Kinetics and Mechanism of the Aminolysis of Thiophenyl Acetates in Acetonitrile

  • 오혁근;양진희;이해황;이익춘
    • Bulletin of the Korean Chemical Society
    • /
    • v.20 no.12
    • /
    • pp.1418-1420
    • /
    • 1999
  • Kinetics and mechanism of the aminolysis of Z-thiophenyl acetates with X-benzylamines are investigated in acetonitrile at 45.0 ℃. The magnitudes of Bronsted coefficients β$_x$ (=1.3~-1.6) and β$_z$ (= -2.1~-2.4) are all large and cross-interaction constant ρxz is relatively large and positive (0.90). These trends are consistent with the rate-limiting breakdown of a tetrahedral intermediate, $T^±$. The proposed mechanism is also supported by adherence of the rate data to the reactivity-selectivity principle (RSP). The kinetic isotope effects, $k_H/k_D$, are greater than unity (1.3-1.4) suggesting a possibility of hydrogen-bonded four-centered transition state. The activation parameters, ΔH$^≠$ and ΔS$^≠$, are consistent with this transition-state structure.

Inhibitory Effect of {Surfactant- MnO4-} Aggregation in KMnO4 Oxidation of Proline and Methionine: A Kinetic Study

  • Tripathi, Ritu;Upadhyay, Santosh K.
    • Journal of the Korean Chemical Society
    • /
    • v.58 no.4
    • /
    • pp.351-358
    • /
    • 2014
  • Anionic (sodium lauryl sulphate, NaLS) cationic (cetyl ammonium bromide, CTAB) and non-ionic (Tween-80) surfactants have been found to inhibit the rate of oxiadation L-proline and L-methionine by alkaline $KMnO_4$. A first order dependence of rate of oxidation was observed with respect to $MnO_4{^-}$. The order of reaction in substrate and alkali was found to be fractional nearby 0.65 and 0.55 in Aminoacid and $OH^-$, respectively. An aggregation/association between $MnO_4{^-}$ and surfactant has been confirmed spectrophotometrically. A mechanism, involving kinetically inactive [$MnO_4{^-}$ surfactant] aggregate and consistent with kinetic data, has been proposed. The effect of surfactants has been discussed in terms of hydrophobic and electrostatic interactions.

A Kinetic Study on the Oxidation of Indole by Peroxomonosulphate in Acetonitrile Solvent

  • Kavery, Muniyappan;Govindasamy, Chandramohan;Johnson, Stephen
    • Journal of the Korean Chemical Society
    • /
    • v.57 no.2
    • /
    • pp.210-215
    • /
    • 2013
  • Kinetics of oxidation of indole by peroxomonosulphate (PMS) in aqueous acetonitrile medium has been investigated. The reaction follows a total second order, first order each with respect to [Indole] and [PMS]. The rate of the reaction was not affected by added [$H^+$]. Variation of ionic strength (${\mu}$) had no influence on the rate. Increase of percentage of acetonitrile decreased the rate. Absen ce of any polymerization indicated a nonradical pathway. Activation and thermodynamic parameters have bee n computed. A suitable kinetic scheme based on these observations is proposed. The reactivity of PMS towards Indole was found to be higher than that with peroxodisulphate.

Photoreactivity and Thermogravimetry of Copper(II) Complexes of N-Salicylideneaniline and Its Derivatives

  • Osman, Ahmed H.;Aly, Aref A.M.;El-Mottaleb, Mohamed Abd;Gouda, Gamal A.H.
    • Bulletin of the Korean Chemical Society
    • /
    • v.25 no.1
    • /
    • pp.45-50
    • /
    • 2004
  • $Cu^{II}$-complexes of N-salicylideneaniline and its derivatives were not light sensitive in most solvents such as acetonitrile. A photo-decomposition occurred upon irradiation in halocarbon solvents such as $CHCl_3$. It has been suggested that such photoreactivity is attributed to the reactivity of charge-transfer to solvent (CTTS) excited state attained upon irradiation. A mechanism has been proposed to account for the results obtained. The complexes have been thermally analysed in nitrogen and static air using thermogravimetry (TG) and derivative thermogravimetry (DTG). The thermal degradation of the complexes proceeds in two or three stages. The kinetic parameters obtained from the Coats-Redfern and Horowitz-Metzger equations show the kinetic compensation effect.

Destruction of 2-Chloriphenol from Wastewater and Investigation of By-products by Ozonation

  • Jeong, O Jin
    • Bulletin of the Korean Chemical Society
    • /
    • v.22 no.8
    • /
    • pp.850-856
    • /
    • 2001
  • This study investigates the ozonation kinetics of 2-chlorophenol in wastewater under acidic condition. Intermediates and by-products generated during the process were rigorously identified and quantified. The major by-products are four carboxylic acids: tartaric acid, oxalic acid, maleic acid, and hydroxymalonic acid. The generation of these organic acids is in agreement with theoretical predictions. But hydroxylated compounds are more favorable to produce than their corresponding non-hydroxylated ones. Based on the information concerning the generation of organic acids and other aromatic intermediates, the complete reaction pathways toward mineralization can be proposed and mathematically modeled. The fitted second-order rate constants are in the same order of magnitude with the results from other studies. Using these oxidation pathways and the corresponding kinetic model, by-products generated in ozonation process can be predicted. This can help in optimizing the design and operation of any subsequent treatment processes.

BSCCO Superconducting Powder by SHS

  • Soh, Dea-Wha;Cho, Yong-Joon;Korobova, N.
    • Proceedings of the Korean Institute of Electrical and Electronic Material Engineers Conference
    • /
    • 2002.11a
    • /
    • pp.99-102
    • /
    • 2002
  • The BSCCO superconductor materials of using Self-propagating High-temperature Synthesis (SHS) were studied. Mechano-chemical activation - as a pre-treatment of the reactants mixture - strongly influences the kinetic parameters, the reaction mechanism, and the composition and structure of the final product. In this paper as an effort for fabricating the SHSed BSCCO superconductor powder SHS method was considered to application in the synthesis of superconducting materials.

  • PDF