• Title/Summary/Keyword: Chemical Industries

Search Result 867, Processing Time 0.024 seconds

A Study on the Status of Working Environment of Some Rubber and Chemical Products Manufacturing Industries in Busan (고무와 화학제품 제조업 산업장의 작업환경실태에 관한 조사연구)

  • Kim, J.Y.;Lee, C.U.;Pae, K.T.;Kim, J.H.;Kim, J.O.;Kim, D.K.;Kim, Y.W.;Chun, C.H.
    • Journal of Preventive Medicine and Public Health
    • /
    • v.14 no.1
    • /
    • pp.97-110
    • /
    • 1981
  • This study was conducted in order to investigate the status of harmful working environ ment on twelve rubber and ten chemical products manufacturing industries in Busan area over a period of five months from lune 1 to October 31, 1980. The summarized results were as follows: 1. The highest and lowest mean values of harmful environmental elements in workroom of rubber products manufacturing industries were noted in twisting (98.7dB) and coating department (77.3dB) to noise, molding ($6.43mg/m^3$) and forming ($1.33mg/m^3$) to dust, bonding (toluene 463.7ppm, xylene 457.8ppm and benzene 111.8ppm, respectively) and splicing (toluene 90.0ppm, xylene 83.3ppm and benzene 6.7ppm, respectively) to organic solvents, respectively. Also in chemical products manufacturing, they were noted in grinding (95.1dB) and shining department (76.8dB) to noise, packing ($4.30mg/m^3$) and staining ($3.20mg/m^3$) to dust, shining (393.3ppm and 375.0ppm, respectively) and varnishing(125.5ppm and 121.7ppm, respectively) to toluene and xylene, and scattering (51.8ppm) and mixing (23.9ppm) to benzene, respectively. 2. The mean values of harmful elements in workroom of rubber products manufacturing were 86.3dB to noise, $4.16mg/m^3$ to dust, 258.2ppm to toluene, 230.3ppm to xylene, and 5 4.0ppm to benzene, respectively. Also in chemical products manufacturing, they were 85.2dB to noise, $3.69mg/m^3$ to dust, 227.9ppm to toluene, 213.2ppm to xylene, and 36.3ppm to benzene, respectively. 3. Number of workers exposed to harmful working environment, over TLV, of a total 10,195 workers in rubber products manufacturing were 1,002(9.8%) to noise, 212 (2.1%) to dust, 1,581(15.5%) to toluene, 1,509(14,8%) to xylene, and 1,524(15.0%) to benzene, respectively. Number of workers exposed to harmful working environment, over TLV, of a 1,913 workers in chemical products manufacturing were 112(5.9%) to noise, 132(6.9%) to each organic solvent, respectively. 4. The values of noise and dust of rubber and chemical products manufacturing in 1980 were lower then those in 1977, but the value of organic solvent in 1980 was similar with that in 1977.

  • PDF

Chronological Concentration Change of Five Chemical Substances in Manufacturing Industry of Busan Area (부산지역 일부 제조업 산업장의 기중 5가지 화학물질의 경시적 농도 변화)

  • Park, Joon Jae;Sun, Byong Gwan;Son, Byung Chul;Moon, Deog Hwan
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.16 no.1
    • /
    • pp.68-80
    • /
    • 2006
  • This study aimed to prepare the fundamental data and assess the status and trend of exposure level for 5 chemical substances such as sulfuric acid, hydrogen chloride, ammonia, formaldehyde and phenol in manufacturing industry by type of industry, working process, and size of factory, chronological change. Subjects related to this study consist of 146 factories, 12 industries and 17 working processes located in Busan area from Jan. 1997 to Dec. 2001. 1. All 5 kinds of chemical substances by type of industry, working process were generated in chemical manufacturing industry. There were founded in 8 types of industries and 13 types of working processes for ammonia, which is the highest number of in all 5 chemical substances. 2. In terms of the exposure level for 5 chemical substances by type of industry, working process, geometric mean concentration for sulfuric acid was $0.40mg/m^3$ in manufacture of chemicals and chemical products, $0.30mg/m^3$ in compounding process, for hydrogen chloride was 0.57 ppm in manufacture of basic metal, 0.48 ppm in dyeing process, for ammonia was 1.11 ppm in manufacture of rubber and plastic products, 0.94 ppm in buffing process, for formaldehyde was 0.49 ppm in manufacture of wood and of products of wood and cork, except furniture; manufacture of articles straw and plating materials, 0.53 ppm in mixing process, and for phenol were 0.53 ppm in manufacture of chemical and chemical products, 0.55 ppm in compounding process, respectively. Results for 5 chemical substances by type of industry and working process were significantly higher than those of the others(p<0.05). 3. The exposure level for hydrogen chloride, formaldehyde were significantly increased by size of industry (p<0.01). ammonia was significantly decreased by size of industry (p<0.01). 4. In trend of the concentration difference of five chemical substances by chronology, geometric mean concentration for sulfuric acid was significantly increased (p<0.01), hydrogen chloride and ammonia were significantly decreased by year (p<0.05) and for formaldehyde and phenol were decreased in chronological change. According to the above results 5 chemical substances were founded together in a way mixed in the same places one another and concentrations of chemical substances by industry, working process, size of industry and year appeared markedly. The authors recommend more systemic and effective work environmental management should be conducted in workplaces generating five chemical substances.

A Study on Risk Analysis of Manufacturing Process Using the Bow-Tie Method (Bow-Tie기법을 이용한 제조공정의 위험성평가 연구)

  • Tae, Chan Ho;Lee, Heon Seok;Byun, Chul Hyun;Yang, Jae Mo;Park, Chulhwan;Ko, Jae Wook
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.3
    • /
    • pp.33-38
    • /
    • 2013
  • The chemical industries have used large amounts of chemicals. If an accident occurs, it caused physical and human damage. We intended to investigate risk assessment for the prevention of accidents. The risk assessment by HAZOP technique has been applide to major chemical industries, and that result has been utilized efficiently. In this study, we analyzed Bow-Tie and HAZOP technique, and risk assesment was performed by Bow-Tie on toxic material process. As a result, the risk that can not be found in the risk assessment of the other is derived, and improvements of 14 to remove the dangers derived. Bow-Tie risk assessment is suitable to derive the applicability of risk factors in the field and to establish the improvement measures.

Factors Affecting Workers' Willingness to Report Incidents in Chemical Plants (화학 공장에서 근로자의 사건 보고 의지에 영향을 미치는 인자)

  • Kim, Beom Soo;Lee, Jong Bin;Jung, Seung Rae;Jin, Sangeun;Chang, Seong Rok
    • Journal of the Korean Society of Safety
    • /
    • v.34 no.3
    • /
    • pp.57-64
    • /
    • 2019
  • Lack of incident reporting culture has been pointed out as a potential risk factor across industries. Consequently, comprehensive understanding of the factors affecting the willingness to report (WTR) is necessary. However, our knowledge on the related studies are not enough to date and even most parts of the existing studies have focused on patient safety, which makes it difficult to universally apply the factors to all industries. Therefore, this study aimed to identify WTR factors in chemical plants and evaluate the influence degree of the factors. To do this, 45 candidate factors were summarized throughout the previous studies and surveying plant safety staff. A questionnaire survey was conducted for 614 all employees from 9 chemical plants which belong to one company, and finally 32 WTR factors were identified throughout 520 responses. Of these, 19 factors were consistent with the previous studies and 13 factors were newly identified. The most influential factor was 'Views on the necessity of incident reporting', and 'Reporting practice by outcome severity', 'Fear of vilification, conflicts, blame, or sanctions' were followed. This result not only suggests various WTR factors suitable for chemical plants, but also shows need to derive specific factors that are appropriate to each industry. An empirical study could be expected to increase incident reporting by using these factors and verify its effectiveness on injury rate.

Development of Thermal Distortion Analysis Method Based on Inherent Strain for TMCP Steels (TMCP 강판의 고유변형도 기반 열변형 해석법 개발)

  • Ha, Yun-Sok;Yang, Jin-Hyuk;Won, Seok-Hee;Yi, Myung-Su
    • Journal of Welding and Joining
    • /
    • v.26 no.3
    • /
    • pp.61-66
    • /
    • 2008
  • As ships become to be larger than ever, the thicker plate and the higher tensile steel plate are used in naval shipyard. Though special chemical composition is needed for high-tensile steels, recent high-tensile steels are made by the TMCP(Thermo-Mechanical control process) skill. The increase of yield stress and tensile stress of TMCP steels is induced from bainite phase which is transformed from austenite, but that increased yield stress can be vanished by another additional thermal cycle like welding and heating. As thermal deformations are deeply related by yield stress of material, the study for prediction of plate deformation by heating should reflect principle of TMCP steels. This study developed an algorithm which can calculate inherent strain. In this algorithm, not only the mechanical principles of thermal deformations, but also the predicting of the portion of initial bainite is considered when calculating inherent strain. The simulations of plate deformation by these values showed good agreements with experimental results of normalizing steels and TMCP steels in welding and heating. Finally we made an inherent strain database of steels used in Class rule.

An Analysis of Economic Effects of The Cloud Computing Industry (산업연관분석을 이용한 클라우드 컴퓨팅 산업의 경제적 파급효과 분석)

  • Kim, Dong Wook;Ban, Seung Hyun;Leem, Choon Seong
    • Journal of Information Technology Services
    • /
    • v.17 no.3
    • /
    • pp.37-51
    • /
    • 2018
  • Recently, cloud computing market is growing geometrically in both private and public area, and many global companies in various domains have developed and provided cloud computing services. In such situation, Korean government made multiple plans for domestic cloud computing industry. However, most research institutes have focused on market size and status information, which makes actual effectiveness of cloud computing service hard to recognize. In this study, we define cloud computing Industry by rearranging Input-Output table published by the Bank of Korea to use Input-Output Analysis. The Input-Output Analysis was devised in 1963 by Leontief and it is used in many fields of study until now. It produces various coefficients that are able to identify production-inducing effect, value-added effect, labor-inducing effect, front and rear chain effect. The analysis results show that production-inducing effect, front and rear chain effect of cloud computing industry is low compared to other industries. However, cloud computing Industry possesses relatively high value-added effect and labor-inducing effect. It is because industry magnitude of cloud computing is smaller than other industries such as manufacturing, chemical industries. The economic effects of the cloud computing industry are not remarkable, but this result is significant to emerging markets and industries and presents the fresh way of analyzing cloud computing research field.

A Study About Weld Defects Detection By Using A Magnetostrictive Sensor (Magnetostrictive Sensor를 이용한 용접결함 검출에 관한 연구)

  • Na, Hyun-Ho;Kim, Ill-Soo;Seo, Joo-Hwan;Son, Sung-Woo;Jeong, Jae-Won;Kim, Ji-Sun;Lee, Ji-Hye
    • Transactions of the Korean Society of Mechanical Engineers A
    • /
    • v.33 no.11
    • /
    • pp.1279-1287
    • /
    • 2009
  • An increasingly competitive business environment has been concentrated on industries to reduce the operating costs. Industries such as gas, oil, petrochemical, chemical, and electric power have employed for the operation and used for large equipment or structures that require a high capital investment. In order to meet these requirements, the industries are increasingly moving toward saving the experimental verification and computer simulation. Therefore industries to reduce the maintenance costs without compromising the operational safety have been forced on finding for better and more efficient methods to inspect their equipment and structures. In this study, it focused on the development the real-time non-contract monitoring system as an efficient tool for the experimental study of weld defects based on the relationship between the measured voltage and input parameters.

Performance Evaluation of the Multistage Soil Washing Efficiency for Remediation of Mixed-contaminated Soil with Oil and Heavy Metals (유류/중금속 복합오염토양 정화를 위한 다단 토양세척 효율평가)

  • Kim, Daeho;Park, Kwangjin;Cho, Sungheui;Kim, Chikyung
    • Journal of Soil and Groundwater Environment
    • /
    • v.22 no.2
    • /
    • pp.33-40
    • /
    • 2017
  • In typical remediation practices, separate washing systems have to be applied to clean up the soils contaminated with both oil and heavy metals. In this study, we evaluated the efficiency of successive two-stage soil washing in removal of mixed-contaminants from soil matrix. Two-stage soil washing experiments were conducted using different combinations of chemical agent: 1) persulfate oxidation, followed by organic acid washing, and 2) Fenton oxidation, followed by inorganic acid washing. Persulfate oxidation-organic acid washing efficiently removed both organic and inorganic contaminants to meet the regulatory soil quality standard. The average removal rates of total petroleum hydrocarbons (TPH), Cu, Pb, and Zn were 88.9%, 82.2%, 77.5%, and 66.3% respectively, (S/L 1:10, reaction time 1 h, persulfate 0.5 M, persulfate:activator 3:1, citric acid 2 M). Fenton oxidation-inorganic acid washing also gave satisfactory performances to give 89%, 80.9%, 87.1%, and 67.7% removal of TPH, Cu, Pb, and Zn, respectively (S/L 1:10, reaction time 1 hr, hydrogen peroxide 0.3 M, hydrogen peroxide:activator 5:1, inorganic acid 1 M).

Effect of Surface Contaminants Remained on the Blasted Surface on Epoxy Coating Performance and Corrosion Resistance

  • Baek, Kwang Ki;Park, Chung Seo;Kim, Ki Hong;Chung, Mong Kyu;Park, Jin Hwan
    • Corrosion Science and Technology
    • /
    • v.5 no.1
    • /
    • pp.27-32
    • /
    • 2006
  • One of the critical issues in the coating specification is the allowable limit of surface contaminant(s) - such as soluble salt(s), grit dust, and rust - after grit blasting. Yet, there is no universally accepted data supporting the relationship between the long-term coating performance and the amount of various surface contaminants allowed after grit blasting. In this study, it was attempted to prepare epoxy coatings applied on grit-blasted steel substrate dosed with controlled amount of surface contaminants - such as soluble salt(s), grit dust, and rust. Then, coating samples were subjected to 4,200 hours of cyclic test(NORSOK M-501), which were then evaluated in terms of resistance to rust creepage, blistering, chalking, rusting, cracking and adhesion strength. Additional investigations on the possible damage at the paint/steel interface were carried out using an Electrochemical Impedance Spectroscopy(EIS) and observations of under-film-corrosion. Test results suggested that the current industrial specifications were well matched with the allowable degree of rust, whereas the allowable amount of soluble salt and grit dust after grit blasting showed a certain deviation from the specifications currently employed for fabrication of marine vessels and offshore facilities.