• Title/Summary/Keyword: Chemical Industries

Search Result 874, Processing Time 0.028 seconds

Recent Progress on Adsorptive Removal of Cd(II), Hg(II), and Pb(II) Ions by Post-synthetically Modified Metal-organic Frameworks and Chemically Modified Activated Carbons

  • Rallapalli, Phani Brahma Somayajulu;Choi, Suk Soon;Ha, Jeong Hyub
    • Applied Chemistry for Engineering
    • /
    • v.33 no.2
    • /
    • pp.133-144
    • /
    • 2022
  • Fast-paced industrial and agricultural development generates large quantities of hazardous heavy metals (HMs), which are extremely damaging to individuals and the environment. Research in both academia and industry has been spurred by the need for HMs to be removed from water bodies. Advanced materials are being developed to replace existing water purification technologies or to introduce cutting-edge solutions that solve challenges such as cost efficacy, easy production, diverse metal removal, and regenerability. Water treatment industries are increasingly interested in activated carbon because of its high adsorption capacity for HMs adsorption. Furthermore, because of its huge surface area, abundant functional groups on surface, and optimal pore diameter, the modified activated carbon has the potential to be used as an efficient adsorbent. Metal-organic frameworks (MOFs), a novel organic-inorganic hybrid porous materials, sparked an interest in the elimination of HMs via adsorption. This is due to the their highly porous nature, large surface area, abundance of exposed adsorptive sites, and post-synthetic modification (PSM) ability. This review introduces PSM methods for MOFs, chemical modification of activated carbons (ACs), and current advancements in the elimination of Pb2+, Hg2+, and Cd2+ ions from water using modified MOFs and ACs via adsorption.

Gas Distribution Mapping and Source Localization: A Mini-Review

  • Taehwan Kim;Inkyu Park
    • Journal of Sensor Science and Technology
    • /
    • v.32 no.2
    • /
    • pp.75-81
    • /
    • 2023
  • The significance of gas sensors has been emphasized in various industries and applications, owing to the growing significance of environmental, social, and governance (ESG) management in corporate operations. In particular, the monitoring of hazardous gas leakages and detection of fugitive emissions have recently garnered significant attention across several industrial sectors. As industrial workplaces evolve to ensure the safety of their working environments and reduce greenhouse gas emissions, the demand for high-performance gas sensors in industrial sectors dealing with toxic substances is on the rise. However, conventional gas-sensing systems have limitations in monitoring fugitive gas leakages at both critical and subcritical concentrations in complex environments. To overcome these difficulties, recent studies in the field of gas sensors have employed techniques such as mobile robotic olfaction, remote optical sensing, chemical grid sensing, and remote acoustic sensing. This review highlights the significant progress made in various technologies that have enabled accurate and real-time mapping of gas distribution and localization of hazardous gas sources. These recent advancements in gas-sensing technology have shed light on the future role of gas-detection systems in industrial safety.

The Supply Shortage Effects of Oil Refinery Industry in Korea (국내 정유산업의 공급지장효과 분석)

  • Cho, Yong-Cheol;Lee, Yong-Hwan;Yoo, Seung-Hoon
    • Journal of Energy Engineering
    • /
    • v.24 no.3
    • /
    • pp.164-172
    • /
    • 2015
  • As the petroleum products produced from the Oil refinery industry (ORI), a national key industry in Korea, are supplied to other industries as an intermediate goods, the supply shortage of ORI has a large impact on the national economy. This paper attempts to analyze the supply shortage effects which are defined as the negative impact of one won of supply failure in the ORI on the production of other industries. To this end, an inter-industry analysis using an input-output (I-O) table describing inter-industry flow of intermediate goods is applied. More concretely, the supply-driven model is employed over the period 1990-2012. In addition, the results are compared with those for shipbuilding, semiconductor, and steel industries. The results show that the supply shortage effects are computed to be 0.9205 won when using 2012 I-O table. More specifically, the supply shortage effects on chemical products and transportation industries are computed to be 0.2113 and 0.1140, which are relatively large, The supply shortage effect of ORI is smaller than that of steel industry (1.4131 won), but larger than that of shipbuilding industry (0.0586 won) and that of semiconductor industry (0.1111 won).

A Study on the Destruction or Removal Efficiency of Toxic Gas Reduction Facilities in Semiconductor and Display Industries (반도체 & 디스플레이 업종에서 사용되는 독성가스 저감시설의 처리효율 측정방법에 관한 연구)

  • Jang, Sung-Su;Han, Jae-Kook;Cho, Hyun-Il;Lee, Su-Kyung
    • Journal of the Korean Institute of Gas
    • /
    • v.21 no.6
    • /
    • pp.88-95
    • /
    • 2017
  • The usage of toxic gas in Korea is increasing in the development of high-tech industries such as semiconductors, displays and solar panels. The recent survey of domestic toxic gas consumption indicates an increase in annual average of 12.4 percent, but it is still focused on usage, and it is negligent in safety and treating the post. In September 2012, an accident occurred in Gu-mi involving hydrofluoric acid leak demonstrates the absence of safety management. Due to the incident, the government, industry and academia have been interested in chemical substances(toxic gas), and the government-led safety management has been established and implemented, but there are still a lot of safety blind spots. The purpose of this study is to develop effective measurement methods for the destruction or removal efficiency of gaseous materials emitted from the Scrubber used in the semiconductor and display industries. Also, this study demonstrated how toxic gas facilities can be applied without error by verification test for the measurement method guideline of the destruction or removal efficiency of the green-house gas reduction facility in the semiconductor and display industries used by the National Institute of Environmental Research and the UNFCCC, and suggested the differentiated measurement methods for toxic gas reduction facilities, and the third party certification for safety facilities is needed to prevent toxic gas accidents.

A study on the management of harmful working environments for Increase of Labor productivity. (노동생산성 향상을 위한 유해작업환경관리에 관한 연구)

  • 조태웅;유익현;박성애
    • Journal of Environmental Health Sciences
    • /
    • v.3 no.1
    • /
    • pp.27-44
    • /
    • 1976
  • This study was carried out to evaluate the harmful factors in working environments and to investigate the labor productivity after improvement of environments, surveying 93 industrial establishments of 10 industries located in Youngdeungpo industrial area in Seoul. The results obtained were as follows: 1) The highest noise level of 125dB(A) was indicated at the rolling process of transport equipment manufacturing industry. 2) The best illumination level was shown in precise machinery industry and the worst was indicated in rubber products, metallic products and transport equipment manufacturing industries. 3) Thermal conditions were above threshold limit value (TLV) at more than two processes of all industries except printing industry. 4) The highest dust concentration was determined in textile and wearing manufacturing industry. 5) Organic solvents were detected at 52 processes in 93 industrial establishments and 33 processes of them showed higher than TLV. The results about harmful chemicals were as follows: a) sulfur dioxide ($SO_2$)was determined higher than TLV on welding process of metallic product manufacturing industry and heat treatment process of transport equipment manufacturing industry. b) Carbon monoxide (CO) concentration was 700ppm at heat treatment process of transport equipment manufacturing industry, indicating 14 times of TLV. c) vinylchloride concentration in the air of PVC raw material mixing process and PVC preparation process of chemical product manufacturing industry was determined higher than TLV. d) Hydrochloride (HCl) concentration in the air of wire expanding process of transport equipment manufacturing industry was determined higher than TLV. 7) Higher values of lead concentration than TLV were determined at lead welding metallic product manufacturing industry and type planting process of process of printing industry, $1.8mg/m^3$ and $0.3mg/m^3$ respectively. 9) 22, 968 of 52, 855 workers (i.e. 43.5%) in 93 industries were exposed to various harmful agents. 10) It was found that the improvement of illumination in electric apparatus manufacturing industry (from 20~40 lux to 420 lux) resulted in an increase in productivity of 6.5% per capita and a decrease in faulty products of 19%. 11) Improvement of environments using local exhaust ventilation system resulted in a decrease of harmful substances lower than TLV and an increase in productivity of 11.4%. 12) Improvement of shovelling tools based on ergonomics resulted in a reduction in energy expenditure of 25.3% and an increase in productivity of 32.2% per capita.

  • PDF

Impact of Oil Price Shocks on Stock Prices by Industry (국제유가 충격이 산업별 주가에 미치는 영향)

  • Lee, Yun-Jung;Yoon, Seong-Min
    • Environmental and Resource Economics Review
    • /
    • v.31 no.2
    • /
    • pp.233-260
    • /
    • 2022
  • In this paper, we analyzed how oil price fluctuations affect stock price by industry using the non-parametric quantile causality test method. We used weekly data of WTI spot price, KOSPI index, and 22 industrial stock indices from January 1998 to April 2021. The empirical results show that the effect of changes in oil prices on the KOSPI index was not significant, which can be attributed to mixed responses of diverse stock prices in several industries included in the KOSPI index. Looking at the stock price response to oil price by industry, the 9 of 18 industries, including Cloth, Paper, and Medicine show a causality with oil prices, while 9 industries, including Food, Chemical, and Non-metal do not show a causal relationship. Four industries including Medicine and Communication (0.45~0.85), Cloth (0.15~0.45), and Construction (0.5~0.6) show causality with oil prices more than three quantiles consecutively. However, the quantiles in which causality appeared were different for each industry. From the result, we find that the effects of oil price on the stock prices differ significantly by industry, and even in one industry, and the response to oil price changes is different depending on the market situation. This suggests that the government's macroeconomic policies, such as industrial and employment policies, should be performed in consideration of the differences in the effects of oil price fluctuations by industry and market conditions. It also shows that investors have to rebalance their portfolio by industry when oil prices fluctuate.

Advancement Plan on Hazardous Material Classification and Comparative Study of the Criteria in UN GHS and Safety Control of Dangerous Substances Act (UN GHS와 위험물안전관리법상의 위험물질 분류기준 비교 및 선진화 방안 연구)

  • Lee, Bong Woo;Lee, Kijun;Park, Jeongpil;Shin, Dongil
    • Journal of the Korean Institute of Gas
    • /
    • v.17 no.5
    • /
    • pp.42-50
    • /
    • 2013
  • With the rapid change of industry and the development of science and technology, more than 100,000 industrial chemicals are being used and 2,000 new materials are developed every year. Chemical products have had favorable influence on our daily life and contributed very much to the prosper of human culture. But some materials are inherently poisonous and dangerous. Korea ranks as the number 7 in world's chemical products market and the chemical sector is contributing to the economic revival through importing and exporting of the products. With the increasing domestic as well as international interests about REACH and GHS, the need for the effective and efficient chemical material management system is getting bigger and bigger. In this research, we compare the criteria in UN GHS and Safety Control of Dangerous Substances Act of Korea for the development of global standard test methods and the classification and labelling for the chemicals, and suggest an advancement plan for the introduction of the GHS in a building block approach. In addition, providing the harmonized information about chemical hazards is suggested for the elimination of international trade barriers for chemical industries.

Ru-based Activated Carbon-MgO Mixed Catalyst for Depolymerization of Alginic Acid (루테늄 담지 활성탄-마그네시아 혼합 촉매 상에서 알긴산의 저분자화 연구)

  • Yang, Seungdo;Kim, Hyungjoo;Park, Jae Hyun;Kim, Do Heui
    • Clean Technology
    • /
    • v.28 no.3
    • /
    • pp.232-237
    • /
    • 2022
  • Biorefineries, in which renewable resources are utilized, are an eco-friendly alternative based on biomass feedstocks. Alginic acid, a major component of brown algae, which is a type of marine biomass, is widely used in various industries and can be converted into value-added chemicals such as sugars, sugar alcohols, furans, and organic acids via catalytic hydrothermal decomposition under certain conditions. In this study, ruthenium-supported activated carbon and magnesium oxide were mixed and applied to the depolymerization of alginic acid in a batch reactor. The addition of magnesium oxide as a basic promoter had a strong influence on product distribution. In this heterogeneous catalytic system, the separation and purification processes are also simplified. After the reaction, low molecular weight alcohols and organic acids with 5 or fewer carbons were produced. Specifically, under the optimal reaction conditions of 30 mL of 1 wt% alginic acid aqueous solution, 100 mg of ruthenium-supported activated carbon, 100 mg of magnesium oxide, 210 ℃ of reaction temperature, and 1 h of reaction time, total carbon yields of 29.8% for alcohols and 43.8% for a liquid product were obtained. Hence, it is suggested that this catalytic system results in the enhanced hydrogenolysis of alginic acid to value-added chemicals.

Recovery of Lactic Acid Using Reactive Dividing Wall Column (분리벽형 반응증류탑을 이용한 젖산회수)

  • Woo, Daesik;Cho, Youngmin;Kim, Bo-kyung;Hwang, Hwidong;Han, Myungwan
    • Korean Chemical Engineering Research
    • /
    • v.48 no.3
    • /
    • pp.342-349
    • /
    • 2010
  • Lactic acid is widely used in the food, chemical and pharmaceutical industries, and there is an increasing demand for lactic acid as the raw material of poly lactic acid(PLA), which is a biodegradable polymer. Lactic acid production has been changing over from production by synthesis to production by fermentation, since the fermentation process is more nature friendly and economic. However, the fermentation method generates excess water and impurities with high boilers. The presence of high boilers and non volatility of lactic acid makes the separation of lactic acid very difficult job. Also, the purification-separation process requires the many investment costs and energy costs. Reactive distillation concept was also introduced for the process, giving higher selectivity and yield compared to the convention method. We introduce a new highly integrated process, reactive diving wall column, to reduce the capital and energy cost for producing a pure lactic acid. The reactive dividing wall column combines reactive distillation and dividing wall column. We compared capital and energy consumption required for the purification of lactic acid the between the proposed design structures. And we examined the effect of major process variables on the process performance and determined optimal process.

Fabrication of Polysulfone Hollow Fiber Membranes for N2/NF3 Separation (N2/NF3 분리용 폴리썰폰 중공사막 제조 연구)

  • Lim, Min Su;Kim, Seong-Joong;Kang, Ha Sung;Park, Ho Bum;Nam, Seung Eun;Park, Ho Sik;Lee, Pyung Soo;Park, You In
    • Membrane Journal
    • /
    • v.26 no.1
    • /
    • pp.76-85
    • /
    • 2016
  • Fabrication of polysulfone (PSf) hollow fiber membranes was investigated for the separation of $N_2/NF_3$ gas mixtures, which are emitted from the display and the semiconductor industries. A combination of the non-solvent induced phase separation (NIPS) and the vapor-induced phase separation (VIPS) technique was applied to develop high flux hollow fiber membranes. Thin polymer layers were further coated onto the surface of the hollow fiber membranes by using polydimethylsiloxiane (PDMS) or Teflon AF1600(R), which contributes to improve the $N_2/NF_3$ selectivity. The $N_2/NF_3$ separation performances of our PSf hollow fiber membranes were determined by the intrinsic properties of coating materials. Especially, the PSf hollow fiber membrane coated with Teflon AF 1600(R) exhibited a higher $N_2/NF_3$ selectivity (> 14) with a slightly lower $N_2$ permeance (4.5 GPU), as compared to the commercial PSf counterparts. This feature provides a good potential as a membrane structure to separate $N_2/NF_3$.