• Title/Summary/Keyword: Chemical Heat Pump

Search Result 58, Processing Time 0.028 seconds

Sintered Metal Wicks Development for the High Performance Loop Heat Pipe(LHP) Systems

  • Choi, Jee-Hoon;Sung, Byung-Ho;Yoo, Jung-Hyun;Seo, Min-Whan;Kim, Chul-Ju
    • Proceedings of the KSME Conference
    • /
    • 2007.05b
    • /
    • pp.2136-2141
    • /
    • 2007
  • The Loop Heat Pipe(LHP) system uses capillary forces so as to pump the working fluid from heat acquisition to heat rejecting systems. The performance of the LHP systems depends mainly upon the operating performance of the wick structure. The capillary pressure increases with decreasing the pore size of the wick structure. By the way, the wick structure's permeability decreases with decreasing the pore size and the porosity. To obtain an ideal wick, the wick structure should possess several characteristics such as the small pore size, high porosity and chemical compatibility with working fluid. Sintered metal wicks have been mainly used as the capillary wick structure mounted in LHP because of the fact that the sintered metal wick has some advantages like convenient selection of wick material, smaller pore size and so on as well as high reliability. In this study, sintered metal wicks were developed to meet required several parameters to design the high performance LHP systems for obtaining even more effective cooling technologies.

  • PDF

An Experimental Study on Absorber with Spiral Tube in Absorption Heat Pump (흡수열펌프에서 나선형 관이 설치된 흡수기의 실험적 연구)

  • Min, Byong-Hun
    • Applied Chemistry for Engineering
    • /
    • v.21 no.1
    • /
    • pp.71-75
    • /
    • 2010
  • The efficient performance of absorber is of great importance for the absorption heat pump cycle. The experimental study of absorber with spiral tube of tangential feeding of liquid phase has been investigated using methanol-glycerine as a working fluid. The effect of change in absorber operating conditions was analyzed to improve the performance. The increase in solution flow rate and cooling flow rate positively affects the absorber performance while an increse in the solution concentration negatively affects the absorber performance. The results showed that mass absorption flux was in the range of $0.2{\sim}0.6kgm^{-2}sec^{-1}$, the solution heat transfer coefficient between 1.6 and $4.2kwm^{-2}K^{-1}$, the absorber thermal load from 0.9 to 1.5kw and the mass transfer coefficient from 0.9 to 1.7 m/sec.

A Study on the Thermal Characteristics of Horizontal Ground Heat Exchanger using Thermal Response Test (열응답시험을 이용한 수평형 지중열교환기 열특성 연구)

  • Chang, Keun Sun;Kim, Min-Jun;Kim, Young-Jae
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.17 no.3
    • /
    • pp.24-30
    • /
    • 2016
  • Vertical and standing column well ground heat exchangers have mostly been installed for ground source heat pump systems (GSHP) and thermal response tests (TRT) have been applied to evaluate the thermal characteristics for these heat exchangers. In this paper, the TRT coupled with a line source method was applied to evaluate the thermal characteristics of the horizontal ground heat exchanger (HGHX). Load tests of a HGHX were also performed to examine the daily variations of the ground and fluid temperatures associated with the daily intermittent operation of GSHP. For this test, the straight HGHX (depth 2 m, length 50 m, 8 line) was installed in Ansan city. The results showed that the variations of ground thermal conductivity of HGHX during one year were relatively small with the range of $1.43{\sim}1.64W/m{\cdot}K$, and the maximum and minimum values appeared in December and May, respectively. Load tests with heat injection rate of 6.0 kW for 10 hours per day to HGHX during twelve days were performed in June, September and December, and resulted in a ground initial temperature rise of $4.31^{\circ}C$, $3.14^{\circ}C$, and $1.21^{\circ}C$ during these days, respectively.

Flow Characteristics Analysis for the Chemical Decontamination of the Kori-1 Nuclear Power Plant

  • Cho, Seo-Yeon;Kim, ByongSup;Bang, Youngsuk;Kim, KeonYeop
    • Journal of Nuclear Fuel Cycle and Waste Technology(JNFCWT)
    • /
    • v.19 no.1
    • /
    • pp.51-58
    • /
    • 2021
  • Chemical decontamination of primary systems in a nuclear power plant (NPP) prior to commencing the main decommissioning activities is required to reduce radiation exposure during its process. The entire process is repeated until the desired decontamination factor is obtained. To achieve improved decontamination factors over a shorter time with fewer cycles, the appropriate flow characteristics are required. In addition, to prepare an operating procedure that is adaptable to various conditions and situations, the transient analysis results would be required for operator action and system impact assessment. In this study, the flow characteristics in the steady-state and transient conditions for the chemical decontamination operations of the Kori-1 NPP were analyzed and compared via the MARS-KS code simulation. Loss of residual heat removal (RHR) and steam generator tube rupture (SGTR) simulations were conducted for the postulated abnormal events. Loss of RHR results showed the reactor coolant system (RCS) temperature increase, which can damage the reactor coolant pump (RCP)s by its cavitation. The SGTR results indicated a void formation in the RCS interior by the decrease in pressurizer (PZR) pressure, which can cause surface exposure and tripping of the RCPs unless proper actions are taken before the required pressure limit is achieved.

Recent Progress in Air-Conditioning and Refrigeration Research : A Review of Papers Published in the Korean Journal of Air-Conditioning and Refrigeration Engineering in 2010 (설비공학 분야의 최근 연구 동향 : 2010년 학회지 논문에 대한 종합적 고찰)

  • Han, Hwa-Taik;Lee, Dae-Young;Kim, Seo-Young;Choi, Jong-Min;Kim, Su-Min;Kwon, Young-Chul;Baik, Yong-Kyu
    • Korean Journal of Air-Conditioning and Refrigeration Engineering
    • /
    • v.23 no.6
    • /
    • pp.449-469
    • /
    • 2011
  • This article reviews the papers published in the Korean Journal of Air-Conditioning and Refrigerating Engineering during 2010. It is intended to understand the status of current research in the areas of heating, cooling, ventilation, sanitation, and indoor environments of buildings and plant facilities. Conclusions are as follows. (1) Research trends of thermal and fluid engineering have been surveyed as groups of general thermal and fluid flow, fluid machinery, and new and renewable energy. Various topics were presented in the field of general thermal and fluid flow. Research issues mainly focused on the thermal reliability of axial fan and compressor in the field of fluid machinery. Studies on the design of ground source heat pump systems and solar chemical reactors were executed in the field of new and renewable energy. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer in thermoelectric cooling/power generation systems, combined heat and power systems, carbon nano fluid with PVP, channel filled with metal foam and smoke ventilation in a rescue station of a railroad tunnel. Also the studies on flow boiling of R123/oil mixture in a plain tube bundle and R410A charge amount in an air cooled mini-channel condenser were reported. In the area of industrial heat exchangers, researches on plate heat exchanger, shell and tube heat exchanger, enthalpy exchanger, micro channel PCHE were performed. (2) Research works on heat transfer area have been reviewed in the categories of heat transfer characteristics and industrial heat exchangers. Researches on heat transfer characteristics included heat transfer in thermoelectric cooling/power generation systems, combined heat and power systems, carbon nano fluid with PVP, channel filled with metal foam and smoke ventilation in a rescue station of a railroad tunnel. Also the studies on flow boiling of R123/oil mixture in a plain tube bundle and R410A charge amount in an air cooled mini-channel condenser were reported. In the area of industrial heat exchangers, researches on plate heat exchanger, shell and tube heat exchanger, enthalpy exchanger, micro channel PCHE were performed. (3) Refrigeration systems with alternative refrigerants such as hydrocarbons, mixed refrigerants, and CO2 were studied. Performance improvement of refrigeration systems are tried applying various ideas of refrigerant subcooling, dual evaporator with hot gas bypass control and feedforward control. The hybrid solar systems combining the solar collection devices with absorption chillers or compression heat pumps are simulated and studied experimentally as well to improve the understanding and the feasibility for actual applications. (4) Research trend in the field of mechanical building facilities has been found to be mainly focused on field applications rather than performance improvements. Various studies on heating and cooling systems, HVAC facilities, indoor air environments and energy resources were carried to improve the maintenance and management of building service equipments. In the field of heating and cooling systems, papers on a transformer cooling system, a combined heat and power, a slab thermal storage and a heat pump were reported. In the field of HVAC facilities, papers on a cooling load, an ondol and a drying were presented. Also, studies on HVAC systems using unutilized indoor air environments and energy resources such as air curtains, bioviolence, cleanrooms, ventilation, district heating, landfill gas were studied. (5) In the field of architectural environment and energy, studies of various purposes were conducted such as indoor environment, building energy, renewable energy and green building. In particular, renewable energy and building energy-related researches have mainly been studied reflecting the global interest. In addition, many researches which related the domestic green building certification of school building were performed to improve the indoor environment of school.

Manufacture and Characteristics of Heat Conductive Blocks for Chemical Heat Pump (화학열펌프용 열전도성 블록의 제조)

  • 한종훈;조길원;이건홍
    • Proceedings of the Korea Society for Energy Engineering kosee Conference
    • /
    • 1995.05a
    • /
    • pp.230-235
    • /
    • 1995
  • 염-암모니아계 화학열펌프기술의 핵심인 전도성 블록의 특성파악을 위한 기초단계 연구로서 전도성 블록의 제조 및 기초물성분석에 관한 연구를 수행하였다. 황산이 함유된 천연흑연을 열처리하여 팽창흑연을 준비하고 특성을 분석하였다. 이 팽창흑연을 압축, 성형하여 흑연지지체를 제조하였으며, 성형된 지지체에 진공기법을 이용하여 염을 함침하고 건조과정을 거쳐 전도성 블록을 제조하였다. 전도성 블록의 특성분석으로서 염의 입자내에 분산정도는 EPMA/EDS, 기공율 및 기공크기 분포는 헬륨침투법과 수은 침투법, 기체투과도는 Darcy's law를 적용하고, 열전도도 측정은 전이 일차원 열류기법을 이용하였다. 전도성 블록이 암모니아와 반응 했을때 부피팽창을 관찰하였으며, 반응기에서 전도성블록의 온도분포를 관찰하였다. 본 연구에서 제조된 블록은 염이 균일하게 분산되어 있었으며 기공율은 제조조건에 따라 0.4 ∼ 0.83, 기체투과도는 0.01 ∼ 10 Darcy, 열전도도는 흑연지지체의 겉보기 밀도가 110 kg/㎥ 인 경우, 반지름방향의 열전도도, λr은 20 W/mK, 축방향의 열전도도, λa는 17 W/mK 이였다. 겉보기밀도가 150 kg/㎥ 인 경우, λr은 22 W/wK, λa는 20 W/wK 이였다. 전도성 블록의 부피팽창은 비가역적이었으며 대부분이 반지름 방향보다 축방향에서 팽창이 일어났다. 온도분포는 초기 반응의 kinetics가 내부온도를 지배하였으나, 시간이 경과후 반응기 내부온도는 외부열전달에 의해 지배되었다.

  • PDF

A Study on the Mixture Properties of IMPEX Reacting Materials for Chemical Heat Pump (화학 열펌프용 IMPEX 혼합반응물의 특성에 관한 연구)

  • ;;Neveu, P.
    • Journal of Energy Engineering
    • /
    • v.3 no.1
    • /
    • pp.44-53
    • /
    • 1994
  • STELF 기술의 핵심의 되는 IMPEX 블록의 잔류 공급률, 겉보기 밀도, 흑연의 혼합비 등 여러 가지 주요 변수가 블록의 특성에 미치는 영향을 조사하여 실제 반응기를 설계하는데 필요한 자료를 구하였다. 대표적인 염들에 대하여 물질전달 및 열전달 문제를 일으키지 않는 영역에서 최소의 부피를 갖는 값들을 계산하였고, 각각의 물질이 갖는 특정 전도도에서의 최대 냉방 및 난방 에너지 밀도를 계산하였다. 이로부터 얻은 값들을 8시간 동안 사용할 수 있는 6kW 냉방용 반응기 설계에 적용하여 본 결과 SrCL2-8/1 NH3가 최적의 염임을 확인하였다.

  • PDF

Computational Design of a 50 kW Chemical Heat Pump System for Air-Conditioning (50 kW 냉방용 화학열펌프 시스템의 전산설계)

  • 서정원;김성준;이태희
    • Journal of Energy Engineering
    • /
    • v.4 no.1
    • /
    • pp.67-75
    • /
    • 1995
  • 50 kW 냉방용 화학열펌프에 관한 전산설계를 하기 위하여 반응기 모사용 부프로그램을 작성하였으며 전체 시스템을 위하여 상용모사기인 ASPEN PLUS를 이용하였다. 반응물로 각각 SrCl2-8/1 NH3 그리고 MnCl2-6/2 NH3를 사용하는 두 시스템에 대하여 비교 연구하였으며, 조작조건에 따라 시스템 설계치의 변화를 관찰하였다. 이로부터 향후 실용화될 화학열펌프 시스템에 대한 기본 설계자료를 제시할 수 있었다. SrCl2-8/1 NH3를 반응물로 한 경우 반응기의 UA는 6,868.2 J/(s·K), 출력은 95.2 kW이었고, 제한 성능 계수는 0.40이었다. MnCl2-6/2 NH3의 경우 UA는 1,569.7 J/(s·K), 출력은 109.0 kW이었으며 제한 성능계수는 0.34이었다. 이로부터 SrCl2-8/1 NH3을 반응물로 한 시스템이 MnCl2-6/2 NH3를 사용한 시스템보다 유리함을 알 수 있었다.

  • PDF