• 제목/요약/키워드: Chemical Conversion Coating

검색결과 81건 처리시간 0.019초

A Study on the Corrosion Behavior of Magnesium Alloy Sealed with Chemical Conversion Coating and Sol-gel Coating

  • Lee, Dong Uk;Chaudhari, Shivshankar;Choi, Seung Yong;Moon, Myung Jun;Shon, Min Young
    • Corrosion Science and Technology
    • /
    • 제20권4호
    • /
    • pp.175-182
    • /
    • 2021
  • Magnesium alloy is limited in the industrial field because its standard electrode potential is -2.363 V vs. NHE (Normal Hydrogen Electrode) at 25 ℃. This high electrochemical activity causes magnesium to quickly corrode with oxygen in air; chemical conversion coating prevents corrosion but causes surface defects like cracks and pores. We have examined the anti-corrosion effect of sol-gel coating sealed on the defected conversion coating layer. Sol-gel coatings produced higher voltage current and smaller pore than the chemical conversion coating layer. The conversion coating on magnesium alloy AZ31 was prepared using phosphate-permanganate solution. The sol-gel coating was designed using trimethoxymethylsilane (MTMS) and (3-Glycidyloxypropyl) trimethoxysilane (GPTMS) as precursors, and aluminum acetylacetonate as a ring-opening agent. The thermal shock resistance was tested by exposing specimens at 140 ℃ in a convection oven; the results showed changes in the magnesium alloy AZ31 surface, such as oxidization and cracking. Scanning electron microscope (FE-SEM) analysis confirmed a sealed sol-gel coating layer on magnesium alloy AZ31. Electrochemical impedance spectroscopy (EIS) measured the differences in corrosion protection properties by sol-gel and conversion coatings in 0.35 wt% NaCl solution, and the potentiodynamic polarization test and confirmed conversion coating with the sol-gel coating show significantly improved resistance by crack sealing.

마그네슘 합금의 방청을 위한 하이브리드 졸-겔 코팅제의 개발 (Development of Hybrid Sol-Gel Coating to Prevent Corrosion of Magnesium Alloys)

  • 이동욱;김영훈;문명준
    • Corrosion Science and Technology
    • /
    • 제17권1호
    • /
    • pp.30-36
    • /
    • 2018
  • The high rate of corrosion of magnesium alloys makes it limited for industrial applications. Therefore, surface treatment is required to enhance their corrosion resistance. In our study, a chemical conversion coating for protecting the corrosion of the magnesium alloy, AZ31B, was prepared by using a phosphate-permanganate solution. The chemical conversion coating had a limited protection ability due to defects arising from cracks and pores in the coating layer. The sol-gel coating was prepared by using trimethoxymethylsilane (MTMS) and 3-glycidoxypropyltrimethoxysilane (GPTMS) as precursors, and aluminum acetyl acetonate as a ring opening agent. The corrosion protection properties of sol-gel and conversion coatings in 0.35wt% NaCl solution were measured by the electrochemical impedance spectroscopy (EIS) and potentiodynamic polarization test. The EIS results indicated that the resistance of the chemical conversion coating with the sol-gel coating was significantly improved through the sol-gel sealed phosphate-permanganate conversion coating. The results of the potentiodynamic polarization test revealed that the sol-gel coating decreased the corrosion current density ($I_{corr}$). The SEM image showed that the sol-gel coating sealed conversion coating and improved corrosion protection.

마그네슘-알루미늄 합금의 화성처리 공정 개발과 그 내식성 평가 (Development of chemical conversion coating process for Mg-Al alloy and its anti-corrosion property)

  • 김성종
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.265-266
    • /
    • 2006
  • The chemical conversion coating formed on magnesium alloy investigated for low cost and harmless in environment by using the colloidal silica as the main component. The film formed in 298 K is thick, the film, which was thought combination of Si-O, was formed. The film formed in 313 K is thinner than that in 298 K. The quantity of film formed at high temperature such as 333 K and 353 K is smaller than dissolved quantity. At the anodic polarization experiment, corrosion resistance in sealing by hot water after chemical conversion treatment in basic solution condition get worse than that in comparison with basic solution condition. In salt spray test, the ratio of black rust on specimen that did not conducted chemical conversion treatment was five times or more compared with those of chemical conversion treated specimen. The film thickness of chemical conversion coating produced by alkali treatment process is thinner than in comparison with that of specimen produced in basic chemical conversion treatment solution condition. It is thought, however, that it showed good corrosion resistance during salt spray test because the area of microcracks is small.

  • PDF

전기아연도금 강판의 몰리브데이트 화성처리 (Molybdate Chemical Conversion Coating of Electro-Galvanized Steel)

  • 김헌태;김인수
    • 한국표면공학회지
    • /
    • 제37권4호
    • /
    • pp.200-207
    • /
    • 2004
  • Molybdate chemical conversion coating layer formed on EGI has been studied in view of corrosion resistance, surface morphologies, and phases formed. It was found that coating layer consists of$ MoO_3$, $MoO_2$, Mo oxides having lower valences than 4 and ZnO. It is interesting to note that the coating layer formed at high Mo concentration (30 g/l) in the temperature range of $40-60^{\circ}C$ exhibited relatively high corrosion resistance, although thickness of coating layer is nearly identical with those formed under the other conditions. It was believed that an increase of driving force due to high Mo concentration plays an important role in the formation of corrosion-resistant coating layer, probably due to tile formation of dense coating layer.

Characteristics of Cr(III)-based Conversion Coating Solution to Apply Aluminum Alloys for Improving Anti-corrosion Properties

  • Shim, Byeong Yun;Kim, Hanul;Han, Chang Nam;Jang, Young Bae;Yun, Jeong Woo
    • 마이크로전자및패키징학회지
    • /
    • 제23권4호
    • /
    • pp.79-85
    • /
    • 2016
  • It is imperative to find environment-friendly coatings as an alternative to the currently used hexavalent chromate conversion coatings for the purpose of improving the anti-corrosion properties of aluminum alloys. Hence, in this study, the corrosion properties of a trivalent chromate conversion coating solution are analyzed and measured. Because of the presence of multiple components in trivalent chromate conversion coating solutions, it is difficult to control plating, attributed to their mutual organic relationship. It is of significance to determine the concentrations of the components present in these coatings; hence, qualitative and quantitative analysis is required. The coating solution contained not only an environment-friendly component chromium(III), but also zirconium, fluorine, sulfur, and potassium, in the coating film. These metals are confirmed to produce a film with improved corrosion resistance to form a thin layer. The excellent corrosion resistance for the trivalent chromate solution is attributed to various inorganic and organic additives.

Formation of Cerium Conversion Coatings on AZ31 Magnesium Alloy

  • Fazal, Basit Raza;Moon, Sungmo
    • 한국표면공학회지
    • /
    • 제49권1호
    • /
    • pp.1-13
    • /
    • 2016
  • This review deals with one of the surface modification techniques, chemical conversion coating and particularly cerium-based conversion coatings (CeCC) as a promising substitute for chromium and phosphate conversion coating on magnesium and its alloys. The CeCCs are commonly considered environmentally friendly. The effects of surface preparation, coating thickness, bath composition, and e-paint on the corrosion behavior of CeCCs have been studied on the AZ31 magnesium alloy. This review also correlates the coating microstructural, morphological, and chemical characteristics with the processing parameters and corrosion protection. Results showed that the as-deposited coating system consists of a three layer structure (1) a nanocrystalline MgO transition layer in contact with the Mg substrate, (2) a nanocrystalline CeCC layer, and (3) an outer amorphous CeCC layer. The nanocrystalline CeCC layer thickness is a function of immersion time and cerium salt used. The overall corrosion protection was crucially dependent on the presence of coating defects. The corrosion resistance of AZ31 magnesium alloy was better for thinner CeCCs, which can be explained by the presence of fewer and smaller cracks. On the other hand, maximum corrosion protection was achieved when AZ31 magnesium samples with thin CeCCs are e-painted. The e-paint layer further restricts and hinders the movement of chloride and other aggressive ions present in the environment from reaching the magnesium surface.

아연 전기 도금 강의 환경친화적인 화성처리 기술 개발 (Development of chemical conversion coating technology by environment friendly method for Zn electroplated steel)

  • 김성종;김정일;장석기
    • 한국마린엔지니어링학회:학술대회논문집
    • /
    • 한국마린엔지니어링학회 2006년도 전기학술대회논문집
    • /
    • pp.271-272
    • /
    • 2006
  • Zinc confers high corrosion resistance by acting as a sacrificial anode, and a zinc coating improves the appearance of steel. Chromate conversion coating (CCC) films are still one of the most efficient surface treatments for steel. Although such films can self-repair via the dissolution of Cr(VI), dissolved Cr(VI) have adverse effects on humans, and the environment. Therefore, we examined the corrosion protection property and morphology of colloidal silica conversion films as an alternative to CCC films. The corrosion behavior was investigated in 3% NaCl solution using electrochemical techniques, including electrochemical impedance spectroscopy, open circuit potential, and the salt spray test(SST). Corrosion was implied by the appearance of red rust on the specimen surface. In corrosion resistance at 3% NaCl solution, red rust appeared at 15-20, 55-70, and 83-98 days on Zn-electroplated steel, colloidal silica conversion-coated specimens, and CCC-coated specimens, respectively. In the salt spray test, the colloidal silica film provided better corrosion protection than CCC films, i.e., red rust appeared at 96 hours on the Zn-electroplated steel sheet, at 432 hours with the CCC films, and at 888 hours with silica conversion coating.

  • PDF

Corrosion and Adhesion of Electrophoretic Paint on AZ31 Magnesium Alloy Pretreated in Cerium Chemical Conversion Coating Solution

  • Phuong, Nguyen Van;Moon, Sungmo
    • 한국표면공학회:학술대회논문집
    • /
    • 한국표면공학회 2015년도 추계학술대회 논문집
    • /
    • pp.189-189
    • /
    • 2015
  • In this study, the corrosion resistance and adhesion of electrophoretic paint (E-paint) were studied on AZ31 magnesium alloy pretreated in cerium chemical conversion coating solutions with the addition of various ethanol concentrations. It was found that with increasing ethanol concentration from 0 to 90 percent can decrease the formation of $Mg(OH)_2/MgO$ and increase the formation of nano-crystalline cerium oxides on the coating. Both corrosion resistance and adhesion of E-painted AZ31 increased with increasing ethanol concentration. The best E-paint sample was observed on the sample pretreatment in cerium chemical conversion coating solution with the addition of 80 percent of ethanol. This sample showed an excellent adhesion without paint detached after water immersion test for 500 h at $40^{\circ}C$, and only a few blisters observed at the near scratched sites after 1000 h salt-spray test.

  • PDF

비크롬계 인산-과망간산 용액을 이용한 AZ31 마그네슘 합금의 산처리에 따른 화성 피막의 특성 평가 (Characteristics Evaluation of Conversion Coating of Acid Pickling AZ31 Magnesium Alloy by a Chromium-Free Phosphate-Permanganate Solution)

  • 김명환;곽삼탁;문명준
    • 한국표면공학회지
    • /
    • 제43권2호
    • /
    • pp.73-79
    • /
    • 2010
  • A chromium-free conversion coating for AZ31 magnesium alloy has been obtained by using a permanganatephosphate solution, which has been developed with acid pickling. Examination have been carried out on the conversion coatings for morphology, composition and corrosion resistance. The morphology of the conversion-coated layer was observed using optical microscope and SEM. It was shown that the conversion coatings are relatively uniform and continuous, with thickness 1.8 to 2.7 ${\mu}m$. The chemical composition of conversion coating was mainly consisted of Mg, O, P, K, Al and Mn by EDS analysis. It was found that the corrosion resistance of the AZ31 magnesium alloy has been improved by the permanganate-phosphate conversion treatment from electrochemical polarization.

알카리성 인산-과망간산 용액을 이용한 AZ31 마그네슘 합금의 친환경 화성 처리 및 화성 피막의 특성 평가 (Characteristics of Environmentally-Friendly Conversion Coating of AZ31 Magnesium Alloy by a Alkaline Phosphate-Permanganate Solution)

  • 김명환;이만식;곽삼탁;문명준
    • 한국표면공학회지
    • /
    • 제44권3호
    • /
    • pp.82-88
    • /
    • 2011
  • A uniform chromium-free conversion coating treated with an alkaline phosphate- permanganate solution was formed on the AZ 31 magnesium alloy. The effect of acid pickling on the morphology and on the corrosion resistance of the alkaline phosphate-permanganate conversion coating was investigated. The chemical composition and phase structure of conversion coating layer were determined via optical microscopy, SEM, EDS, XPS and XRD. Results show that the conversion coatings are relatively uniform and continuous, with thickness 1.8 to $2.4\;{\mu}m$. The alkaline phosphate-permanganate conversion coating was mainly composed of elements Mg, O, P, Al and Mn. The conversion-coated layers were stable compounds of magnesium oxide and spinel ($MgAl_2O_4$). These compounds were excellent inhibitors to corrosion. The electrochemical corrosion behaviors of coatings in 3.5 wt.% NaCl solutions were evaluated by electrochemical impedance spectroscopy, potentiodynamic polarization technique. EIS results showed a polarization resistance of $0.1\;k{\Omega}$ for the untreated Mg and $16\;k{\Omega}$ for the alkaline phosphate-permanganate conversion treatment sample, giving an improvement of about 160 times. The results of the electrochemical measurements demonstrated that the corrosion resistance of the AZ 31 magnesium alloy was improved by the alkaline phosphate-permanganate conversion treatment.