• Title/Summary/Keyword: Chemical Company

Search Result 447, Processing Time 0.025 seconds

Effectiveness of the Sensor using Lead Dioxide Electrodes for the Electrochemical Oxygen Demand (전기화학적 산소요구량 측정용 이산화납 전극 센서의 유효성)

  • Kim, Hong-Won;Chung, Nam-Yong
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.21 no.4
    • /
    • pp.575-581
    • /
    • 2012
  • The electrochemical oxygen demand (ECOD) is an additional sum parameter, which has not yet found the attention it deserves. It is defined as the oxygen equivalent of the charge consumed during an electrochemical oxidation of the solution. Only one company has yet developed an instrument to determine the ECOD. This instrument uses $PbO_2$-electrodes for the oxidation and has been successfully implemented in an automatic on-line monitor. A general problem of the ECOD determination is the high overpotential of electrochemical oxidations of most organic compounds at conventional electrodes. Here we present a new approach for the ECOD determination, which is based on the use of a solid composite electrodes with highly efficient electro-catalysts for the oxidation of a broad spectrum of different organic compounds. Lead dioxide as an anode material has found commercial application in processes such as the manufacture of sodium per chlorate and chromium regeneration where adsorbed hydroxyl radicals from the electro-oxidation of water are believed to serve as the oxidizing agent. The ECOD sensors based on the Au/$PbO_2$ electrode were operated at an optimized applied potential, +1.6 V vs. Ag/AgCl/sat. KCl, in 0.01 M $Na_2SO_4$ solution, and reduced the effect of interference ($Cl^-$ and $Fe^{2-}$) and an expended lifetime (more than 6 months). The ECOD sensors were installed in on-line auto-analyzers, and used to analyze real samples.

Effect of Uniconazole Treatment on Plant Tolerance to $SO_2$ Injury and Enzymatic Activity and Platanus Occidentalis (Uniconazole 처리가 양버즘나무의 $SO_2$ 내성증대 및 효소의 활성에 미치는 영향)

  • Cho, Jeong-Hee;Ku, Ja-Hyeong;Choi, Jong-Myung
    • Korean Journal of Environmental Agriculture
    • /
    • v.15 no.4
    • /
    • pp.479-487
    • /
    • 1996
  • This study was conducted to investigate the phytoprotective effects of uniconazole on $SO_2$ injury in P. occidentalis. The detoxification role of free radical scavengers such as superoxide dismutase (SOD) and peroxidase (POD) was also examined under the conditions of combined treatment with uniconazole and diethyldithiocarbamate (DDTC). Uniconazole drenching significantly reduced the occurrence of visible injuries. Though shoot length, leaf area, and T/R rate were greatly decreased by uniconazole application, the tolerance to $SO_2$ was enhanced through increased chlorophyll content and activities of SOD and POD. Spray of DDTC decreased the activity of SOD and POD resulting in the increase of visible injury. Plant tolerance to $SO_2$ induced by uniconazole application was reduced by the additional application of DDTC. These results indicate that plant tolerance to $SO_2$ induced by uniconazole is associated with the reduction of vegetative growth as well as the increase in free radical scavengers such as SOD and POD.

  • PDF

The Structure Integrity Assessment of the Wall Thinned Elbow Considering In/Out-Plane Bending (열림·닫힘 방향 하중이 고려된 두께 감소된 엘보우의 건전성평가)

  • Jang, Ungburm;Shin, Kyuin;Lee, Sungho;Kuan, Changhee
    • Journal of the Society of Disaster Information
    • /
    • v.12 no.1
    • /
    • pp.1-9
    • /
    • 2016
  • Local wall thinning elbow due to the water flow is one of the main degradation phenomenon in carbon steel pipe of plant system. The API579 code of FFS (fitness for service) used in the chemical plant gives a guideline to protect local wall thin problem in a straight pipe, but it does not include an elbow. In this study, the locally wall thinned elbow, which is considered an extrados or intrados wall thinned elbow, was carried out considering in-plane or out-plane bending using FEM (finite element method) analysis, and some of results were also compared with the experimental data. The results could give the structure integrity assessment to protect the local wall thinned elbow.

Improvement of hot work environment in the curing processes of a tire manufacturing company (타이어 제조공장 가류공정의 온열환경 개선에 관한 연구)

  • Lim, Jung-ho;Kim, Tae-Hyeung
    • Journal of Korean Society of Occupational and Environmental Hygiene
    • /
    • v.21 no.1
    • /
    • pp.1-10
    • /
    • 2011
  • Generally, the tire curing process is the process in which the sulfur is added and subsequently the tire is heated to give the tire elasticity. In this process, all kinds of the chemicals in the tire are emitted with a lot of heat. The chemical fume and heat aggravate the work environment. To solve this problem, 92 local exhaust ventilators and 8 gravity ventilators were used, but not satisfactory yet. Preliminary survey showed that the temperatures in the process were very high: 30.3, 32.9 and $37.2^{\circ}C$ at 2, 4 and 6m above the ground level, respectively in the winter (outside temperature was $2^{\circ}C$). It can be imagined that the process is severely hot in the summer time. The higher temperature distribution in the higher space tells us that the hot plume could not be removed with the existing ventilation systems. Therefore, in this study, some alternative ventilation systems were designed. The partitions were used to contain the hot plume to increase the capture efficiency. The gravity ventilators were newly designed to improve the extraction efficiency of hot fume. To satisfy the balance of pressure in the curing process, some supply air system was introduced by renewing the existing air conditioning system. Many alternative solutions were evaluated by using computational fluid dynamics modelling. The best and applicable solution was selected and the existing ventilation system was modified. After implementing the new ventilation system, the hot environment was much improved. The temperature reduction in the curing process was about $6.4^{\circ}C$.

Effect of Uniconazole and Free Radical Scavenger Treatments on Reduction of $SO_2$ Injury in Platanus occidentalis (Uniconazole 및 Free Radical Scavenger처리가 양버즘나무의 $SO_2$ 피해경감에 미치는 효과)

  • Cho, Jeong-Hee;Ku, Ja-Hyeong;Choi, Jong-Myung
    • Korean Journal of Environmental Agriculture
    • /
    • v.16 no.1
    • /
    • pp.14-18
    • /
    • 1997
  • The objective of this research was to increase phytoprotective effects by combined treatment of uniconazole and free radical scavengers such as ascorbic acid or sodium benzoate on $SO_2$ injury in P. occidentalis. The plant injury, chlorophyll content and enzyme activity of superoxide dismutase(SOD) and peroxidase(POD) affected by combined treatment were also investigated. The phytoprotective role of uniconazole was nullified by spray of Diethyldithiocarbamate(DDTC) resulting in the decrease of SOD and POD activities. Free radical scavengers, sodium benzoate and ascorbic acid, did not affect SOD and POD activity, but significantly inhibited the development of visible injury, degradation of chlorophyll, and SOD and POD activity in leaves exposed to $SO_2$. The spray of ascorbic acid decreased plant susceptibility to $SO_2$ induced by DDTC application. These results indicate that uniconazole application increase SOD activity that play a role of antioxidant in plant body, but sodium benzoate and ascorbic acid do not affect enzyme activities of SOD or POD.

  • PDF

Anti-Helicobacter pylori Compounds from Maackia amurensis

  • Park, Woo Sung;Bae, Ji-Yeong;Kim, Hye Jin;Kim, Min Gab;Lee, Woo-Kon;Kang, Hyung-Lyun;Baik, Seung-Chul;Lim, Kyung Mook;Lee, Mi Kyeong;Ahn, Mi-Jeong
    • Natural Product Sciences
    • /
    • v.21 no.1
    • /
    • pp.49-53
    • /
    • 2015
  • Eight isoflavonoid compounds were isolated from the EtOAc fraction of Maackia amurensis which had shown the highest anti-Helicobacter pylori activity among the fractions, using medium pressure liquid chromatography and recrystallization. Based on the spectroscopic data including $^1H$-NMR, $^{13}C$-NMR, HMBC and MS data, the chemical structures of the isolates were determined to be (-)-medicarpin (1), afromosin (2), formononetin (3), tectorigenin (4), prunetin (5), wistin (6), tectoridin (7) and ononin (8). Anti-H. pylori activity of each compound was evaluated with broth dilution assay. As a result, (-)-medicarpin (1), tectorigenin (4) and wistin (6) showed anti-H. pylori activity. (-)-Medicarpin (1) exhibited the most potent growth inhibitory activity against H. pylori with the minimal inhibitory concentration $(MIC)_{90}$ of $25{\mu}M$, and tectorigenin (4) with $MIC_{90}$ of $100{\mu}M$ ranked the second. This is the first study to show the anti-H. pylori activity of M. amurensis, and it is suggested that the stem bark of M. amurensis or the EtOAc fraction or the isolated compounds can be a new natural source for the treatment of H. pylori infection.

Integrating the Mechanisms of Agricultural Reservoir and Paddy Cultivation to the HSPF-MASA-CREAMS-PADDY System (농업용 저수지와 논 경작을 고려한 HSPF-MASA-CREAMS-PADDY 연계 시스템 개발)

  • Lee, Do Gil;Song, Jung-Hun;Ryu, Jeong Hoon;Lee, Jaenam;Choi, Soon-Kun;Kang, Moon Seong
    • Journal of The Korean Society of Agricultural Engineers
    • /
    • v.60 no.6
    • /
    • pp.1-12
    • /
    • 2018
  • The objectives of this study were to develop a system linking hydrologic and water quality models considering the mechanisms of agricultural reservoir and paddy cultivation and to evaluate whether the developed system simulates hydrologic and water quality processes better than a hydrologic model that do not consider the mechanisms. The system consisted of Hydrological Simulation Program-Fortran (HSPF) as a watershed model, Module-based hydrologic Analysis System for Agricultural watersheds (MASA) as reservoir water balance model, and Chemical, Runoff and Erosion from Agricultural Management System-Paddy (CREAMS-PADDY) as a hydrologic and water quality model for paddy fields. This study carried out on the Seolseong-Cheon watershed in Icheon, and the water level and water quality had been monitored for two years at the outlet of the watershed. According to the results of this study, the performance of the simulation using HSPF-MASA-CREAMS-PADDY system was better than others, but they did not show a statistically significant difference. This seemed to be due to the uncertainty of the farming data and the water quality data of the reservoir. Therefore, if accurate input data for the system is obtained, HSPF-MASA-CREAMS-PADDY system could be used to model an agricultural watershed to obtain more realistic results. The results of this study could be utilized to the modeling of agricultural watersheds in Korea where paddy rice cultivation is dominant.

Design Standard of Activated Carbon Vessel for the Intermittent Emission Sources of Volatile Organic Compounds (휘발성 유기화합물의 간헐적 배출원에 대한 활성탄 흡착 시스템 설계기준)

  • Lee, Si-Hyun;Lim, Jeong-Whan;Rhim, Young-Jun;Kim, Sang-Do;Woo, Kwang-Je;Son, Mi-Sook;Park, Hee-Jae;Seo, Man-Cheol;Ryu, Seung-Kon
    • Journal of Korean Society for Atmospheric Environment
    • /
    • v.23 no.2
    • /
    • pp.250-260
    • /
    • 2007
  • It was investigated that the emission characteristics of volatile organic compounds (VOCs) from small and medium companies located on industrial complexes in Metropolitan area. The emission characteristics are intermittent sources in which VOCs emissions are highly depends on the working condition. Optimized ventilation system to improve air quality in working area for the three typical companies were installed. Adsorption characteristics of major VOCs such as MEK, IPA, and toluene emitted front the companies were investigated for design of the activated carbon vessel as a VOCs control facility in each company. Concentration of total hydrocarbon and gas amounts needed to ventilation were also used as a design parameter. Mixed adsorbent to improve adsorption characteristics of problematic solvents like IPA and the design guideline of the activated carbon vessel have been suggested.

Tylosin Production by Streptomyces fradiae Using Raw Cornmeal in Airlift Bioreactor

  • Choi, Du-Bok;Choi, On-You;Shin, Hyun-Jae;Chung, Dong-Ok;Shin, Dae-Yewn
    • Journal of Microbiology and Biotechnology
    • /
    • v.17 no.7
    • /
    • pp.1071-1078
    • /
    • 2007
  • Using a 50-1 airlift bioreactor, for the effective production of tylosin from Streptomyces fradiae TM-224 using raw cornmeal as the energy source, various environmental factors were studied in flask cultures. The maximum tylosin concentration was obtained at $32^{\circ}C$ and pH between 7.0 and 7.5. When seed was inoculated after 24 h of culture, the maximum tylosin concentration, 5.7 g/l, was obtained after 4 days of culture. Various concentrations of raw cornmeal were tested to investigate the optimum initial concentration for the tylosin production. An initial raw cornmeal concentration of 80 g/l gave the highest tylosin concentration, 5.8 g/l, after 5 days of culture. Of the various nitrogen sources, soybean meal and fish meal were found to be the most effective for the production of tylosin. In particular, with the optimal mixing ratio, 12 g/l of soybean meal to 14 g/l of fish meal, 7.2 g/l of tylosin was obtained after 5 days of culture. To compare raw cornmeal and glucose for the production of tylosin in the 50-1 airlift bioreactor for 10 days, fed-batch cultures were carried out under the optimum culture conditions. When raw com meal was used as the energy source, the tylosin production increased with increasing culture time. The maximum tylosin concentration after 10 days of culture was 13.5 g/l, with a product yield from raw cornmeal of 0.123 g/g of consumed carbon source, which was about 7.2 times higher than that obtained when glucose was used as the carbon source.

A Study on Workers' Risk-Aware Smart Bands System in Explosive Areas (폭발위험지역 근로자 위험 인지형 스마트밴드시스템에 대한 연구)

  • Lee, Byong-Kwon
    • Journal of Internet of Things and Convergence
    • /
    • v.5 no.2
    • /
    • pp.73-79
    • /
    • 2019
  • Research is underway on services and systems that provide real-time alerts for suffocating gases and potentially explosive materials, but currently smart bend type services are lacking. This study supports real-time identification of explosion hazards due to static electricity in the workplace and immediate elimination of accident occurrence factors, real-time monitoring of worker status and workplace hazards (oxygen, hazardous chemical concentration), and immediate warning and data in case of danger. We propose a method of establishing an accident prevention system through analysis. In this way, various accidents that may occur in industrial sites are monitored using IoT-based intelligent sensor nodes, wireless network technology, data processing middleware, and integrated control system, and real-time risk information at the industrial sites is prevented and accidents are prevented. By supporting a safe working environment, the company can significantly reduce costs compared to post-procurement costs.