• Title/Summary/Keyword: Chemical Characteristics of Soil

Search Result 915, Processing Time 0.028 seconds

Characteristics of Fertility of Cucumber Cultivated Soils at Controlled Horticulture in Chungnam Province

  • Choi, Moon-Tae;Yun, Yeo-Uk;Lee, Jin-Il;Lee, Jong-Eun;Jung, Suck-Kee;Nam, Yun-Gyu;Lee, Young Han
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.47 no.4
    • /
    • pp.262-268
    • /
    • 2014
  • The management of soil chemical properties is very important to sustainable agriculture of many horticultural crops, including cucumber. This study was conducted to find the optimal soil properties of environmentally friendly agriculture in controlled horticulture. Soil chemical properties of 267 samples were collected from soil in Chungnam Province. The average of pH, EC, OM, available $P_2O_5$, exchangeable K, Ca, and Mg was 6.1, $5.38dS\;m^{-1}$, $34g\;kg^{-1}$, $1,321mg\;kg^{-1}$, $1.50cmol_c\;kg{-1}$, $10.3cmol_c\;kg{-1}$, and $3.4cmol_c\;kg{-1}$, respectively. The organic matter content in silty clay loam was significantly higher than in the other soil textures, whereas the pH, EC, exchangeable K, and Mg in loamy fine sand showed significantly lower among soil textures. The EC value and exchangeable Mg concentration were highest in mountain foot-slope soils. The frequency distribution within optimum range of soil chemical properties was 26.2%, 30.3%, 2.3%, 3.8%, 3.4%, and 6.7% for pH, OM, available $P_2O_5$, exchangeable K, Ca, and Mg, respectively. Especially, excessive portion of available $P_2O_5$ and exchangeable Ca were 94.0% and 94.4%, respectively. The EC value and organic matter content of soil samples were positive correlation with all chemical properties except soil pH. In principle component analysis of chemical properties in soil samples, the percentage of variance explained by PC 1 was 52.2%, while PC 2 explained 21.3% of the variance, for a cumulative total of 73.5%. In conclusion, these results are considered to improve soil nutrient management for sustainable controlled horticulture.

Physical-chemical Properties and Phosphorus Adsorption Characteristics of Soils in Baicheng, China (중국 길림성 백성지역 흑개토의 이화학성 및 인산 흡착 특성)

  • Jin, Sheng-Ai;Lee, Sang-Mo;Choi, Woo-Jung;Yoo, Sun-Ho
    • Applied Biological Chemistry
    • /
    • v.44 no.2
    • /
    • pp.92-96
    • /
    • 2001
  • Soil physical-chemical properties and phosphorous adsorption characteristics were investigated to obtain the informations of the appropriate fertilization and soil management in Baicheng region, China, where agricultural circumstances at present forces to consider the use of land for crop production. Soils were collected from one uncultivated and three cultivated lands on August 1993. Soil $_PH$ was very higher in uncultivated land than in cultivated land, their values were 10.2 and 7.4, respectively. Regardless of cultivation, soil organic matter contents were below 2%, and concentrations of available soil phosphorus expressed as Bray 1 P and Olson P were less than 10 mg P $kg^{-1}$, however, cation exchange capacity was higher than 20 cmol(+) $kg^{-1}$. For uncultivated soil, the values of exchangeable sodium percent and calcium saturation percent were higher than 100%. The major cation of soil saturation paste extracts was Na regardless of land use type. Based on electrical conductivity and sodium adsorption ratio of saturation paste extracts, uncultivated soil was classified as saline-sodic soil and cultivated soil was classified as sodic or normal soil. The maximum adsorption capacity of phosphorus calculated by Langmuir isotherm ranged from 406 to 521 mg P ,$kg^{-1}$. The constraints of soils in Baicheng regions for agricultural cops werw high salt concentration, unfavorable soil chemical composition such as low concentration of available phosphorous, and poor drainage due to soil dispersion by high Na concentration. Therefore, the soil in Baicheng region, need the application of phosphorus fertilizer to increase the soil fertility and the proper soil management to improve the soil physical property especially permeability and soil structure.

  • PDF

Effect of Agricultural Practice and Soil Chemical Properties on Community-level Physiological Profiles (CLPP) of Soil Bacteria in Rice Fields During the Non-growing Season (논의 휴한기 이용형태와 토양화학성이 토양세균의 탄소원 이용에 미치는 영향)

  • Eo, Jinu;Kim, Myung-Hyun;Song, Young Ju
    • Korean Journal of Environmental Agriculture
    • /
    • v.38 no.4
    • /
    • pp.219-224
    • /
    • 2019
  • BACKGROUND: Soil bacteria play important roles in organic matter decomposition and nutrient cycling during the non-growing season. The purpose of this study was to investigate the effects of soil management and chemical properties on the utilization of carbon sources by soil bacteria in paddy fields. METHODS AND RESULTS: The Biolog EcoPlate was used for analyzing community-level carbon substrate utilization profiles of soil bacteria. Soils were collected from the following three types of areas: plain, interface and mountain areas, which were tested to investigate the topology effect. The results of canonical correspondence analysis and Kendall rank correlation analysis showed that soil C/N ratio and NH4+ influenced utilization of carbon sources by bacteria. The utilization of carbohydrates and complex carbon sources were positively correlated with NH4+ concentration. Cultivated paddy fields were compared with adjacent abandoned fields to investigate the impact of cultivation cessation. The level of utilization of putrescine was lower in abandoned fields than in cultivated fields. Monoculture fields were compared with double cropping fields cultivated with barley to investigate the impact of winter crop cultivation. Cropping system altered bacterial use of carbon sources, as reflected by the enhanced utilization of 2-hydroxy benzoic acid under monoculture conditions. CONCLUSION: These results show that soil use intensity and topological characteristics have a minimal impact on soil bacterial functioning in relation to carbon substrate utilization. Moreover, soil chemical properties were found to be important factors determining the physiological profile of the soil bacterial community in paddy fields.

Cover Crop Effects of Winter Rye (Secale cereale L.) on Soil Characteristics and Conservation in Potato (Solanum tuberosum L.) Slope Field (경사밭 감자(Solanum tuberosum L.) 재배 시 휴한기 호밀(Secale cereal L.) 재배에 따른 토양 특성 및 토양 보전 효과)

  • Bak, Gyeryeong;Lee, Jeong-Tae
    • Journal of Environmental Science International
    • /
    • v.30 no.12
    • /
    • pp.1015-1025
    • /
    • 2021
  • Our research work aimed to evaluate cover crop effects of winter rye on soil characteristics, soil conservation, and yield productivities on potato fields with 15% slope during a fallowed period. There were two controls of bared field without any cultivation and conventional potato cultivation without winter rye. Potato cultivation increased soil pH, organic matter, available phosphate, and exchangeable cation regardless of cover crop cultivation. Sub-soil, particularly, all components of soil chemical properties showed higher value in winter rye cultivation than conventional cultivation. Higher soil density was observed on cover crop cultivation than conventional cultivation resulting from root residues of the cover crop both topsoil and subsoil. Cover crop residues positively affected plant growth and reduced the amount of soil erosion by holding the soil. Although severe soil erosion was seen in conventional cultivation, winter rye cultivation declined soil erosion by 47% during the fallow period on potato slope fields. Distinct soil bacterial communities were detected among treatments and some OTU(Operational Taxonomic Unit)s showed significantly higher abundance in winter rye treatment. Total yield and commercial rate demonstrated no significant differences while higher tuber phosphate, K+, and Mg2+ contents were observed in winter rye cultivation.

Geological Characteristics of a Wetland in Mt. Geumjeong (금정산 산지습지의 지질학적 특성)

  • Cha, Eun-Jee;Hamm, Se-Yeong;Kim, Hyun-Ji;Lee, Jeong-Hwan;Cheong, Jae-Yeol;Ok, Soon-Il
    • Journal of Wetlands Research
    • /
    • v.12 no.2
    • /
    • pp.1-12
    • /
    • 2010
  • This study examined geological characteristics of a wetland in Mountain Geumjeong in Busan Metropolitan City. Field survey and laboratory tests were performed to identify topographic features, geological and structural geological characteristics, rock strength along the distance from the wetland, soil profile in the wetland, and chemical property of the wetland soil. The bedrock of the wetland consists of hornblende granite. Hornblende granite and rhyolitic rock around the wetland have the joints with strikes of N-S, E-W, and NE-SW directions and with higher dips greater than $60^{\circ}$. Lower rock strength and higher weathering grades take place towards the wetlands. According to X-ray diffraction analysis of wetland soil samples, kaolinite, montmorillonite, and gibbsite appear which demonstrate weathered products of feldspars in the hornblende granite. The soil profile in the wetland comprises O, A, B, and C horizons from the land surface. The contents of the organic matters decrease from shallow parts to deeper parts of the soil profile. In addition, $K^+$ and $Na^+$ originating from the weathering of feldspars are dominant components among inorganic ions in the wetland soil.

Soil Classification of Anthropogenic Soils in a Remodeled Area Using Soil Taxonomy and World Reference Base for Soil Resources

  • Lee, Seung-Been;Chun, Hyen-Chung;Cho, Hyun-Jun;Hyun, Byung-Keun;Song, Kwan-Cheol;Zhang, Yong-Seon;Sonn, Yeon-Kyu;Park, Chan-Won
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.46 no.6
    • /
    • pp.536-541
    • /
    • 2013
  • In Soil Taxonomy system, anthropogenic soils are still classified as Entisols since the International Classification Committee for Anthropogenic Soils is in the process of classifying anthropogenic soils as new orders. In reality, it is difficult to characterize anthropogenic soils because Soil Taxonomy (ST) system does not distinguish between natural and anthropogenic Entisols. On the other hand, World Reference Base for soil resources (WRB) considers human impacts on soils and contains an independent category of anthropogenic soils, which makes easier to understand anthropogenic soil characteristics than Soil Taxonomy system. A remodeled paddy field (Gasan) was selected to classify by ST and WRB. Soil samples were taken to analyze chemical and physical properties. Based on the results of the analyses, the ST system classified Gasan as coarse loamy, mixed, mesic, Aquic Udorthents while the WRB did as Stagnic Urbic Technosols (Oxyaquic, Arenic). As a conclusion, the WRB classification information of the anthropogenic provides more detail characteristics of the anthropogenic soils.

Spatial variability analysis of soil strength to slope stability assessment

  • Lombardi, Mara;Cardarilli, Monica;Raspa, Giuseppe
    • Geomechanics and Engineering
    • /
    • v.12 no.3
    • /
    • pp.483-503
    • /
    • 2017
  • Uncertainty is a fact belonging to engineering practice. An important uncertainty that sets geotechnical engineering is the variability associated with the properties of soils or, more precisely, the characterization of soil profiles. The reason is due largely to the complex and varied natural processes associated with the formation of soil. Spatial variability analysis for the study of the stability of natural slopes, complementing conventional analyses, is able to incorporate these uncertainties. In this paper the characterization is performed in back-analysis for a case of landslide occurred to verify afterwards the presence of the conditions of shear strength at failure. This approach may support designers to make more accurate estimates regarding slope failure responding, more consciously, to the legislation dispositions about slope stability evaluation and future design. By applying different kriging techniques used for spatial analysis it has been possible to perform a 3D-slope reconstruction. The predictive analysis and the areal mapping of the soil mechanical characteristics would support the definition of priority interventions in the zones characterized by more critical values as well as slope potential instability. This tool of analysis aims to support decision-making by directing project planning through the efficient allocation of available resources.

Geochemical Characteristics and Assesment of Nitrate Nitrogen in Groundwater in Yanggu-Gun, Gangwon-Do in Korea

  • Choi, Won Gyu
    • Journal of Soil and Groundwater Environment
    • /
    • v.24 no.6
    • /
    • pp.26-32
    • /
    • 2019
  • An analysis of groundwater quality is significant for monitoring and managing water contamination and groundwater system. For the purpose of those, the geochemical characteristics of groundwater were studied over the concern for water quality, water type and origin of nitrate nitrogen. Total colony counts were detected in 11 out of 20 samples, and the average value was 31.73 CFU/ml. Range and average of NO3-N concentrations were 0.9~24.0 mg/L and 8.3 mg/L. All groundwater types were found to be Ca2+-HCO3-. The range and average of NO3-N were 0.2~17.4 mg/L and 8.7 mg/L, and those of δ15N were 1.7~8.9‰, and 5.0‰. Careful consideration is required for evaluating the origin of nitrogen when NO3-N concentration is low. In general, noticeable difference between rockbed and alluvial water was not found. The ranges of nitrate origins by chemical fertilizer, livestock manure and domestic sewage, and natural soil were 29.6~76.4%, 14.2~58.9% and 2.6~7.0%, and the average values of those were 57.4%, 37.4%, and 5.3%, respectively. Origin of nitrate was affected by more chemical fertilizer than the other parameters. Rockbed water was more affected by chemical fertilizer than alluvial water.

Pedogentic Jarosite of Acid Sulfate Soil of Gimhae Series I. Some Chemical Characteristics (Jarosite 광물(鑛物)의 토양생성학적(土壤生成學的) 연구(硏究) I. 화학적(化學的) 특성(特性))

  • Shin, Jae-Sung;Jang, Yong-Seon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.26 no.4
    • /
    • pp.278-283
    • /
    • 1993
  • Gimhae series has a high content of jarosite mineral which is evoluted in soils from sediments rich in sulfur. Chemical compositions of jarosite mineral and soil samples were analyzed with water and various extraction solutions to evaluate the pedogenetic processes of the soil. The pH of jarosite mineral and $Bg_3$ horizon are below 4.0 and not much changed after incubation of dry samples rich in jarosite. The pedogentic formation of jarosite was identified through the chemical analysis indicating that cations and anion of K, Na, Al and S are present in abandance in $Bg_2$ and $Bg_3$ horizons.

  • PDF

Evaluation on the Characteristics of Weak Soil Adjacent to Chemical Compaction Pile of Using Bottom Ash (Bottom Ash를 활용한 Chemical Compaction Pile의 주변 지반 개량 특성 평가)

  • Kim, Sang-Chel;Park, Kyung-Tae;Sung, Ik-Hyun
    • Journal of the Korea institute for structural maintenance and inspection
    • /
    • v.11 no.1
    • /
    • pp.163-170
    • /
    • 2007
  • To evaluate on the applicability of Chemical Compaction Pile (CCP) method to weak soil improvement, two kinds of testing chambers were fabricated and the changes of water content and shear stress associated with soil types, ages and distances from the center of pile were measured with different mixing proportions of CCP such as bottom ash, lime powder and added admixture. As results of test, it was noted that water content and shear stress of ground are mainly affected by the amount of lime powder and increase of the amount corresponds to rapid improvement of soil. And the improvement depended greatly on the types of soil also. It was finally found that CCP developed can be applicable to bearing pile as well as soil improvement since CCP has a bearing capacity enough to carry loads.