• Title/Summary/Keyword: Chemical Change

Search Result 4,389, Processing Time 0.031 seconds

Effect of Nitrite Substitution of Sausage with Addition of Purple Sweet Potato Powder and Purple Sweet Potato Pigment (자색고구마 분말과 자색 색소를 이용한 소시지의 아질산염 대체 효과)

  • Lee, Namrye;Kim, Chung Sick;Yu, Gun Sung;Park, Man Chun;Jung, Wan Ou;Jung, Un Kwon;Jo, Yoon Joung;Kim, Kyung Hee;Yook, Hong Sun
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.44 no.6
    • /
    • pp.896-903
    • /
    • 2015
  • The objective of this study was to investigate the effect of nitrite substitution of sausage with purple sweet potato by examining the quality characteristics of sausage. Four sausage samples were prepared as follows: F1 (0.15% sodium nitrite), F2 (0.2% pigment), F3 (0.2% pigment and 5% powder), and F4 (0.2% pigment and 10% powder). A substitution of sodium nitrite with 0.2% purple sweet potato pigment reduced redness while increased yellowness. However, the addition of 5% purple sweet potato powder to 0.2% purple sweet potato pigment increased redness while reduced yellowness, which was similar to those of sausage with 0.15% addition of sodium nitrite. Further, color change increased as the content of purple sweet potato increased. As the amount of purple sweet potato increased, the contents of Ca, K, and Mg increased but hardness, gumminess, and chewiness decreased. In the sensory evaluation, the addition of purple sweet potato did not influence on appearance, color, or flavor. However, the addition of 10% purple sweet potato decreased the taste and texture of sausage. Correlation coefficients between overall acceptability, texture, appearance, color, taste, and flavor were 0.901, 0.895, 0.877, 0.844, and 0.688, respectively. Therefore, proper content of purple sweet potato powder and purple sweet potato pigment were determined to be 5% and 0.2%, respectively, for the substitution of sodium nitrite.

Long-term (2002~2017) Eutropication Characteristics, Empirical Model Analysis in Hapcheon Reservoir, and the Spatio-temporal Variabilities Depending on the Intensity of the Monsoon (합천호의 장기간 (2002~2017) 부영양화 특성, 경험적 모델 분석 및 몬순강도에 따른 시공간적 이화학적 수질 변이)

  • Kang, Yu-Jin;Lee, Sang- Jae;An, Kwang-Guk
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.5
    • /
    • pp.605-619
    • /
    • 2019
  • The objective of this study was to analyze eutrophication characteristics, empirical model analysis, and variation of water quality according to monsoon intensity in Hapcheon Reservoir for 16 years from 2002 to 2017. Long-term annual water quality analysis showed that Hapcheon Reservoir was in a meso-nutrition to eutrophic condition, and the eutrophic state intensified after the summer monsoon. Annual rainfall volume (high vs. low rainfall) and the seasonal intensity in each year were the key factors that regulate the long-term water quality variation provided that there is no significant change of the point- and non-point source in the watershed. Dry years and wet years showed significant differences in the concentrations of TP, TN, BOD, and conductivity, indicating that precipitation had the most direct influence on nutrients and organic matter dynamics. Nutrient indicators (TP, TN), organic pollution indicators (BOD, COD), total suspended solids, and chlorophyll-a (Chl-a), which was an estimator of primary productivity, had significant positive relations (p<0.05) with precipitation. The Chl-a concentration, which is an indicator of green algae, was highly correlated with TP, TN, and BOD, which differed from other lakes that showed the lower Chl-a concentration when nutrients increased excessively. Empirical model analysis of log-transformed TN, TP, and Chl-a indicated that the Chl-a concentration was linearly regulated by phosphorus concentration, but not by nitrogen concentration. Spatial regression analysis of the riverine, transition, and lacustrine zones of $log_{10}TN$, $log_{10}TP$, and $log_{10}CHL$ showed that TN and Chl-a had significant relations (p<0.005) while TN and Chl-a had p > 0.05, indicating that phosphorus had a key role in the algal growth. Moreover, the higher correlation of both $log_{10}TP$ and $log_{10}TN$ to $log_{10}CHL$ in the riverine zone than the lacustrine zone indicated that there was little impact of inorganic suspended solids on the light limitation in the riverine zone.

Soil Chemical Property, Mortality Rates and Growth of Planting Trees from Soil Covering Depths in Coastal Reclaimed Land of Asan Area (아산지역 해안매립지의 복토높이에 따른 토양화학성, 수목 고사율 및 생장 특성)

  • Byun, Jae-Kyeong;Kim, Choon-Sig;Lim, Chae-Cheol;Jeong, Jin-Hyon
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.44 no.3
    • /
    • pp.502-509
    • /
    • 2011
  • It is important to determine optimum soil covering depths for tree survival and growth because soil covering depths for establishing tree planting bases in coastal reclaimed lands are related to the costs for soil collection, transportation and land reclamation. The objectives of this study were carried out to determine optimum soil covering depths for the normal growth of planted trees in a coastal reclaimed land. The study sites were located in Asan National Industrial Complex in Pyeongtaek City, Gyeonggi-do. Four tree species (Pinus thunbergii, Chamaecyparis pisifera, Zelkova serrata, Quercus acutissima) with one hundred eighty trees of each species were planted in various depths of soil covering (no soil covering, 0.5 m, 1.5 m, 2.0 m soil covering treatments) on April 1998, and the tree growth patterns were measured on September 2000. The change of soil properties, tree mortality rate, root collar diameter and height growth were measured from each soil covering depth treatment on September 2000. Soil pH, EC, exchangeable cations ($K^+$, $Na^+$, $Ca^{2+}$, $Mg^{2+}$), anion $Cl^-$, and base saturation increased with decreased soil covering depths. The mortality rates of tree species showed decreased with increased soil covering depths. The height growth of tree species increased with increased soil covering depths. Height growth of Pinus thunbergii was significantly different between the soil covering depth below 0.5m and other three covering depths, while the growth of other species (C. pisifera, Z. serrata, Q. acutissima) was significantly higher in soil covering depths below 1.5 m than in other soil covering depth treatments. The root collar diameter growth of all tree species showed increasing trends with increased soil covering depths. It is recommended to cover the soil depths above 1.5 m to decrease mortality and to stimulate the tree growth of C. pisifera, Z. serrata and Q. acutissima, while P. thunbergii which is a salt tolerate species could be planted in the 1.0 m soil covering depth.

An Introduction of Korean Soil Information System (한국 토양정보시스템 소개)

  • Hong, S. Young;Zhang, Yong-Seon;Hyun, Byung-Keun;Sonn, Yeon-Kyu;Kim, Yi-Hyun;Jung, Sug-Jae;Park, Chan-Won;Song, Kwan-Cheol;Jang, Byoung-Choon;Choe, Eun-Young;Lee, Ye-Jin;Ha, Sang-Keun;Kim, Myung-Suk;Lee, Jong-Sik;Jung, Goo-Bok;Ko, Byong-Gu;Kim, Gun-Yeob
    • Korean Journal of Soil Science and Fertilizer
    • /
    • v.42 no.1
    • /
    • pp.21-28
    • /
    • 2009
  • Detailed information on soil characteristics is of great importance for the use and conservation of soil resources that are essential for human welfare and ecosystem sustainability. This paper introduces soil inventory of Korea focusing on national soil database establishment, information systems, use, and future direction for natural resources management. Different scales of soil maps surveyed and soil test data collected by RDA (Rural Development Administration) were computerized to construct digital soil maps and database. Soil chemical properties and heavy metal concentrations in agricultural soils including vulnerable agricultural soils were investigated regularly at fixed sampling points. Internet-based information systems for soil and agro-environmental resources were developed based on 'National Soil Survey Projects' for managing soil resources and for providing soil information to the public, and 'Agroenvironmental Change Monitoring Project' to monitor spatial and temporal changes of agricultural environment will be opened soon. Soils data has a great potential of further application in estimation of soil carbon storage, water capacity, and soil loss. Digital mapping of soil and environment using state-of-the-art and emerging technologies with a pedometrics concept will lead to future direction.

Particulate Matter and CO2 Improvement Effects by Vegetation-based Bio-filters and the Indoor Comfort Index Analysis (식생기반 바이오필터의 미세먼지, 이산화탄소 개선효과와 실내쾌적지수 분석)

  • Kim, Tae-Han;Choi, Boo-Hun;Choi, Na-Hyun;Jang, Eun-Suk
    • Korean Journal of Environmental Agriculture
    • /
    • v.37 no.4
    • /
    • pp.268-276
    • /
    • 2018
  • BACKGROUND: In the month of January 2018, fine dust alerts and warnings were issued 36 times for $PM_{10}$ and 81 times for PM2.5. Air quality is becoming a serious issue nation-wide. Although interest in air-purifying plants is growing due to the controversy over the risk of chemical substances of regular air-purifying solutions, industrial spread of the plants has been limited due to their efficiency in air-conditioning perspective. METHODS AND RESULTS: This study aims to propose a vegetation-based bio-filter system that can assure total indoor air volume for the efficient application of air-purifying plants. In order to evaluate the quantitative performance of the system, time-series analysis was conducted on air-conditioning performance, indoor air quality, and comfort index improvement effects in a lecture room-style laboratory with 16 persons present in the room. The system provided 4.24 ACH ventilation rate and reduced indoor temperature by $1.6^{\circ}C$ and black bulb temperature by $1.0^{\circ}C$. Relative humidity increased by 24.4% and deteriorated comfort index. However, this seemed to be offset by turbulent flow created from the operation of air blowers. While $PM_{10}$ was reduced by 39.5% to $22.11{\mu}g/m^3$, $CO_2$ increased up to 1,329ppm. It is interpreted that released $CO_2$ could not be processed because light compensation point was not reached. As for the indoor comfort index, PMV was reduced by 83.6 % and PPD was reduced by 47.0% on average, indicating that indoor space in a comfort range could be created by operating vegetation-based bio-filters. CONCLUSION: The study confirmed that the vegetation-based bio-filter system is effective in lowering indoor temperature and $PM_{10}$ and has positive effects on creating comfortable indoor space in terms of PMV and PPD.

Biosynthesis of Silver Nanoparticles Using Microorganism (미생물을 이용한 은 나노입자 생합성)

  • Yoo, Ji-Yeon;Jang, Eun-Young;Hong, Chang-Oh;Kim, Keun-Ki;Park, Hyean-Cheal;Lee, Sang-Mong;Kim, Young-Gyun;Son, Hong-Joo
    • Journal of Life Science
    • /
    • v.28 no.11
    • /
    • pp.1354-1360
    • /
    • 2018
  • The aim of this study was to develop a simple, environmentally friendly synthesis of silver nanoparticles (SNPs) without the use of chemical reducing agents by exploiting the extracellular synthesis of SNPs in a culture supernatant of Bacillus thuringiensis CH3. Addition of 5 mM $AgNO_3$ to the culture supernatant at a ratio of 1:1 caused a change in the maximum absorbance at 418 nm corresponding to the surface plasmon resonance of the SNPs. Synthesis of SNPs occurred within 8 hr and reached a maximum at 40-48 hr. The structural characteristics of the synthesized SNPs were investigated by various instrumental analysis. FESEM observations showed the formation of well-dispersed spherical SNPs, and the presence of silver was confirmed by EDS analysis. The X-ray diffraction spectrum indicated that the SNPs had a face-centered cubic crystal lattice. The average SNP size, calculated using DLS, was about 51.3 nm and ranged from 19 to 110 nm. The synthesized SNPs exhibited a broad spectrum of antimicrobial activity against a variety of pathogenic Gram-positive and Gram-negative bacteria and yeasts. The highest antimicrobial activity was observed against C. albicans, a human pathogenic yeast. The FESEM observations determined that the antimicrobial activity of the SNPs was due to destruction of the cell surface, cytoplasmic leakage, and finally cell lysis. This study suggests that B. thuringiensis CH3 is a potential candidate for efficient synthesis of SNPs, and that these SNPs have potential uses in a variety of pharmaceutical applications.

Monitoring Soil Characteristics and Growth of Pinus densiflora Five Years after Restoration in the Baekdudaegan Ridge (백두대간 마루금 복원사업지에서의 5년 경과 후 토양특성 및 소나무 생장 모니터링)

  • Han, Seung Hyun;Kim, Jung Hwan;Kang, Won Seok;Hwang, Jae Hong;Park, Ki Hyung;Kim, Chan-Beom
    • Korean Journal of Environment and Ecology
    • /
    • v.33 no.4
    • /
    • pp.453-461
    • /
    • 2019
  • This study was conducted to monitor the soil characteristics and growth of Pinus densiflora and to determine the effect of soil characteristics on growth rate five years after an ecological restoration project in Baekdudaegan ridge including Ihwaryeong, Yuksimnyeong, and Beoljae sites. The ecological restoration project was executed with the forest of P. densiflora in 2012-2013. In April 2018, we collected soil samples from each site and measured the height and the diameter at breach height (DBH) of P. densiflora. Although there was no significant change of soil pH compared to the early stage of restoration (one year after the project), it was high in Ihwaryeong, and Beoljae with values of 7.7 and 6.4, respectively. Also, the organic matter decreased by 70-80%, and the available phosphorus (P) was unchanged in three restoration sites. The decreased organic matter can be attributed to restriction of inflow and thus decomposition of litter in the early stage after the restoration. The tree height growth rate ($m\;yr^{-1}$) of P. densiflora in Yuksimnyeong was the highest at 1.02, followed by Beolja at 0.75 and Ihwaryeong at 0.17. The height growth rate showed negative relationships with soil pH and cations, including Na and Ca concentrations and a positive relationship with available phosphate. The low growth rate in the Ihwaryeong site, in particular, might result from the poor nutrient availability due to high soil pH and the decrease in water absorption into the root due to high Na and Ca concentrations. The substantial reduction of organic matter after five years indicates that the need for soil improvement using chemical fertilizer and biochar.

A Study on the Possibility of Recycling Coir Organic Substrates for using Strawberry Hydroponics Media (토마토 폐배지를 딸기 수경재배 배지로 재이용 가능성 연구)

  • Lee, Gyu-Bin;Park, Young-Hoon;Choi, Young-Whan;Son, Beung-Gu;Kim, Jooh-Yup;Kang, Nam-Jun;Kang, Jum-Soon
    • Journal of Korea Society of Waste Management
    • /
    • v.34 no.2
    • /
    • pp.205-213
    • /
    • 2017
  • The current study was performed to investigate the effect of recycling coir substrates on the growth, fruit yield, and quality of strawberry plants. Analysis of physical properties revealed that the pH of a fresh coir substrate was 5.04 while those of substrates reused for one and two years were 5.20 and 5.33, respectively. The electrical conductivity (EC) of a new substrate was as high as $4.58dS{\cdot}m^{-1}$. This can cause salt stress after transplanting. The EC tended to decrease as the substrate was recycled, and the EC of a two-year recycled substrate was $1.48dS{\cdot}m^{-1}$. The fresh substrate had lower nitrogen and calcium concentrations, but higher phosphate, potassium, and sodium concentrations than the recycled coir substrate. The coir substrates recycled for one or two years maintained better chemical properties for plant growth than the fresh substrate. Strawberry growth varied depending on the number of years that the coir substrate was recycled. In general, strawberries grown in substrates that had been reused for two years did better than those grown in substrates that had been reused once or were fresh. Ninety days after transplanting, a plant grown in a substrate that had been reused for two years contained 25 leaves, which was 3.6 more than with a fresh substrate. In addition, the plants grown in a substrate that had been reused for two years exhibited larger leaf areas than those grown in other substrates. Coir substrates that had been reused for one year increased the number and area of leaves, but not as much as the substrate that had been reused for two years. One- and two-year reused coir substrates increased the weight of strawberries produced relative to the unused substrate, but the difference was not statistically significant. The plants grown in two-year reused substrates were longer and wider, as well. Also, the number of fruits per plant was higher when substrates were reused. Specifically, the number of fruits per plant was 28.7 with a two-year reused substrate, but only 22.2 with a fresh substrate. The fruit color indices (as represented by their Hunter L, a, b values) were not considerably affected by recycling of the coir substrate. The Hunter L value, which indicates the brightness of the fruit, did not change significantly when the substrate was recycled. Neither Hunter a (red) nor b (yellow) values were changed by recycling. In addition, there were no significant changes in the hardnesses, acidities, or soluble solid-acid ratios of fruits grown in recycled substrates. Thus, it is thought that recycling the coir substrate does not affect measures of fruit quality such as color, hardness, and sugar content. Overall, reuse of coir substrates from hydroponic culture as high-bed strawberry growth substrates would solve the problems of new substrate costs and the disposal of substrates that had been used once.

Solvothermal Preparation of Nanocrystalline TiO2 Using Alcohol-water Mixed Solvent (알코올-물 혼합용액을 이용하는 Solvothermal 법에 의한 나노크기의 TiO2 제조)

  • Lee, Sang Geun;Park, Seong Soo;Hong, Seong Soo;Park, Jong Myung;Lee, Seung Ho;Kim, Dae Sung;Lee, Gun Dae
    • Applied Chemistry for Engineering
    • /
    • v.22 no.6
    • /
    • pp.685-690
    • /
    • 2011
  • In this study, a solvothermal reaction to prepare nanocrystalline titania was carried out using $TiCl_4$ and mixed solvents of alcohol and water. The effects of the type and the composition of alcohol on the crystal structure and agglomeration of final $TiO_2$ products were investigated. The products were characterized by X-ray diffraction (XRD), transmission electron microscopy (TEM) as well as scanning electron microscopy (SEM). In the solvothermal reaction using the n-butanol solutions with different volume ratios of n-butanol/water (100/0, 75/25, 50/50, 25/75, 0/100), the extent of agglomeration of obtained rutile $TiO_2$ was found to change with the volume ratio of n-butanol/water, and the n-butanol/water ratio of 75/25 revealed the best result for the preparation of well-dispersed nanocrystalline $TiO_2$ powders. The crystal phase of $TiO_2$ prepared through the solvothermal reaction changed with the type of alcohol in solvent (alcohol/water = 75/25). $TiO_2$ products obtained with the aqueous solutions of methanol, ethanol and isopropanol have an anatase phase, while that with n-butanol has a rutile phase. The results showed that, in the solvothermal reaction using both $TiCl_4$ as a starting material and the alcohol-water mixed solvents without any other additive, the enhancement of dispersion and control of crystal structure of $TiO_2$ products can be feasible by simply varying the composition and type of alcohol in the mixed solvents.

Water quality characteristics and spatial distribution of phytoplankton during dry and rainy seasons in Bunam Lake and Cheonsu Bay, Korea (부남호·천수만의 갈수기와 강우기 수질 오염 특성과 식물플랑크톤의 공간 분포 특성)

  • Lee, Minji;Seo, Jin Young;Baek, Seung Ho
    • Korean Journal of Environmental Biology
    • /
    • v.39 no.2
    • /
    • pp.184-194
    • /
    • 2021
  • Since the construction of a dike in 1983, the water quality in the Bunam Lake has continued to deteriorate due to algal bloom caused by agricultural nutrient loading. Therefore, we evaluated the change in water quality and phytoplankton ecological characteristics in Bunam Lake and Cheonsu Bay, Korea. Water temperature, salinity, dissolved oxygen, chemical oxygen demand (COD), chlorophyll, and phytoplankton community were surveyed in April during the dry season and in July during the rainy reason. As a result, during the dry period, phytoplankton proliferated greatly and stagnated in the Bunam Lake while a very high population of cyanobacteria Oscillatoria spp. (8.61×107 cells L-1) was recorded. Most of the nutrients, except, nitrate and nitrite, were consumed due to the large growth of phytoplankton. However, during the rainy period, concentrations of ammonia, phosphate, silicate, nitrate, and nitrite, were very high towards the upper station due to the inflow of fresh water. Cyanobacteria Oscillatoria and Microcystis spp. were dominant in the Bunam Lake during the rainy period. Even in the Cheonsu Bay, cyanobacteria dominated due to the effect of discharge and diatoms, such as, Chaetoceros spp. and Eucampia zodiacus, which also proliferated significantly due to increased levels of nutrients. Since the eutrophication index was above 1 in Bunam Lake, it was classified as eutrophic water and the Cheonsu Bay was classified as eutrophic water only during the rainy season. In addition, a stagnant seawater-derived hypoxia water mass was observed at a depth of8m in the Bunam Lake adjacent to the tide embankment and the COD concentration reached 206 mg L-1 in the bottom layer at B3. Based on this result, it is considered that the water quality will continue to deteriorate if organic matters settle due to continuous inflow of nutrients and growth of organisms while the bottom water mass is stagnant.