• 제목/요약/키워드: Chelator

검색결과 211건 처리시간 0.019초

The Role of $Ca^{2+}$ in Retardation Effects of Benzyladenine on the Senescence of Wheat (Triticum aestivum L.) Leaves

  • Hong, Kee-Jong;Jin, Chang-Duck;Hong, Young-Nam
    • Journal of Plant Biology
    • /
    • 제39권2호
    • /
    • pp.113-121
    • /
    • 1996
  • The role of Ca2+ on benzyladenine (BA)-induced senescence retardation in mature wheat (Triticum aestivum L.) primary leaves was investigated. When an extracellular calcium chelator, ethylene glycol-bis-($\beta$-aminoethylether)-N, N'-tetraacetic acid (EGTA) together with BA, was applied to senescing leaves for 4 days of dark incubation, the content of chlorophyll and soluble protein decreased rapidly. And, the content of malondialdehyde (MDA), known to be a degradation product of membrane lipids, increased compared with the BA alone control. The BA-EGTA combination also caused the stimulation of protease and RNase activity and a rapid loss of catalase activity owing to the decling of BA effects. In the case of treatment with only intracellular calcium antagonist 3, 4, 5-trimethoxybenzoic acid 8-(diethylamino) octyl ester (TMB-8) without the BA addition, the chlorophyll content at day 4 after dark incubation decreased in paralled with the increasing concentration of the antagonist. In addition, the chlorophyll content at 10-5 M calcium ionophore A23187 treatment in the absence of BA was similar to that of the BA alone treatment. These results suggest that calcium may mediate the retardation effect of BA on leaf senescence by acting as a second messenger and that the calcium input from cell organelles, as well as the calcium inflow from intercellular spaces and cell walls, may be involved in modulating cytosolic calcium levels related to BA action.

  • PDF

Tributyltin Induces Apoptosis in R2C via Oxidative Stress and Caspase-3 Activation by Disturbance of $Ca^{2+}$

  • Lee, Kyung-Jin;Lee, Jong-Bin
    • 환경생물
    • /
    • 제21권3호
    • /
    • pp.303-307
    • /
    • 2003
  • Tributyltin (TBT) used world-wide in antifouling paints toy ships is a wide-spread environmental pollutant. At low doses, antiproliferative modes of action have been shown to be involved, whereas at higher doses apoptosis seems to be the mechanism of toxicity in reproductive organs by TBT. In this study, we investigated that the mechanisms underlying apoptosis induced by TBT in R2C cell. Effects of TBT on intracellular $Ca^{2+}$ level and reactive oxygen species (ROS) were investigated in R2C cells by fluorescence detector. TBT significantly induced intracellular $Ca^{2+}$ level in a time-dependent manner. The rise in intracellular $Ca^{2+}$ level was followed by a time-dependent generation of reactive oxygen species (ROS) at the cytosol level. Simultaneously, TBT induced the release of cytochrome c from the mitochondrial membrane into the cytosol. Furthermore, ROS production and the release of cytochrome c were reduced by BAPTA, an intracellular $Ca^{2+}$ chelator, indicating the important role of $Ca^{2+}$ in R2C during these early intracellular events. In addition, Z-DEVD FMB, a caspase -3 inhibitor, decreased apoptosis by TBT. Taken together, the present results indicated that the apoptotic pathway by TBT might start with an increase in intracellular $Ca^{2+}$ level, continues with release of ROS and cytochrome c from mitochondria, activation of caspases, and finally results in DNA fragmentation.

무 유식물에서의 니켈내성과 히스티딘의 작용 (Nickel Tolerance and the Complexing Role of Histidine in Raphanus sativus)

  • 김태윤;홍정희
    • 한국환경과학회지
    • /
    • 제13권8호
    • /
    • pp.711-719
    • /
    • 2004
  • The effect of nickel (Ni) on growth and some tolerance strategies with regard to heavy metal tolerance mechanism was investigated in radish (Raphanus sativus) seedlings. The protective effect of histidine on nickel stress conditions was also monitored. The seedling growth decreased with an increase in metal concentrations. The inhibitory effect was more pronounced in the root elongation than in the shoot elongation. Increasing Ni supply showed a progressive increase of Ni concentrations in the roots and shoots. Ni content was higher in the shoots than in the roots. In the presence of nickel, radish exhibited an antioxidative defense mechanism, as evidenced by the elevated malondialdehyde(MDA), showing that nickel is an efficient inducer of lipid peroxidation. Exposure of radish to elevated concentrations of nickel was accompanied by an increase in the proline content. Supplemental histidine in the presence of Ni ameliorated metal-induced growth inhibition and lipid peroxidation. Combinations of Ni and histidine resulted in a significant decline in proline content compared with Ni stress alone, indicating that histidine may provide protection against the adverse effect of Ni stress. From the results it is suggested that histidine is an efficient chelator by complexing metal ion within the plant and may playa role in nickel tolerance implicated in metal detoxification.

Expression and Characterization of Recombinant Human Cu,Zn-Superoxide Dismutase in Escherichia coli

  • Kang, Jung-Hoon;Choi, Bong-Jin;Kim, Sung-Moon
    • BMB Reports
    • /
    • 제30권1호
    • /
    • pp.60-65
    • /
    • 1997
  • Expression of human Cu.Zn-superoxide dismutase (SOD) with activity comparable to human erythrocyte enzyme was achieved in E. coli B21(DE3) by using the pET-17b expression vector containing a T7 promoter. Recombinant human SOD was found in the cytosol of disrupted bacterial cells and represented > 25% of the total bacterial proteins. The protein produced by the E. coli cells was purified using a combination of ammonium sulfate precipitation, Sephacryl S-100 gel filtration and DEAE-Sephacel ion exchange chromatography. The recombinant Cu,Zn-SOD and human erythrocyte enzyme were compared using dismutation activity, SDS-PAGE and immunoblotting analysis. The mass of the subunits was determined to be 15,809 by using a electrospray mass spectrometer. The copper specific chelator. diethyldithiocarbamate (DOC) reacted with the recombinant Cu,Zn-SOD. At $50{\mu}M$ and $100{\mu}M$ concentrations of DOC, the dismutation activity was not inhibited for one hour but gradually reduced after one hour. This result suggests that the reaction of DOC with the enzyme occurred in two distinct phases (phase I and phase II). During phase I of this reaction, one DOC reacted with the copper center, with retention of the dismutation activity while the second DOC displaced the copper, with a loss of activity in phase II.

  • PDF

A Phospholipase C-Dependent Intracellular $Ca^{2+}$ Release Pathway Mediates the Capsaicin-Induced Apoptosis in HepG2 Human Hepatoma Cells 73

  • Kim Jung-Ae;Kang Young Shin;Lee Yong Soo
    • Archives of Pharmacal Research
    • /
    • 제28권1호
    • /
    • pp.73-80
    • /
    • 2005
  • The effect of capsaicin on apoptotic cell death was investigated in HepG2 human hepatoma cells. Capsaicin induced apoptosis in time- and dose-dependent manners. Capsaicin induced a rapid and sustained increase in intracellular $Ca^{2+}$ concentration, and BAPTA, an intracellular $Ca^{2+}$ chelator, significantly inhibited capsaicin-induced apoptosis. The capsaicin-induced increase in the intracellular $Ca^{2+}$ and apoptosis were not significantly affected by the extracellular $Ca^{2+}$ chelation with EGTA, whereas blockers of intracellular $Ca^{2+}$ release (dantrolene) and phospholipase C inhibitors, U-73122 and manoalide, profoundly reduced the capsaicin effects. Interestingly, treatment with the vanilloid receptor antagonist, capsazepine, did not inhibit either the increased capsaicin-induced $Ca^{2+}$ or apoptosis. Collectively, these results suggest that the capsaicin-induced apoptosis in the HepG2 cells may result from the activation of a PLC-dependent intracellular $Ca^{2+}$ release pathway, and it is further suggested that capsaicin may be valuable for the therapeutic intervention of human hepatomas.

Pretargeting : A concept refraining traditional flaws in tumor targeting

  • Bhise, Abhinav;Yoo, Jeongsoo
    • 대한방사성의약품학회지
    • /
    • 제6권1호
    • /
    • pp.53-58
    • /
    • 2020
  • Pretargeting is a two-component strategy often used for tumor targeting to enhance the tumor-to-background ratio in cancer diagnosis as well as therapy. In the multistep strategy, the highly specific unlabeled monoclonal antibodies (mAbs) with the reactive site is allowed to get localized at tumor site first, and then small and fastclearing radiolabeled chelator with counter reactive site is administered which covalently attaches to mAbs via inverse electron demand Diels-Alder reaction (IEDDA). The catalyst-free IEDDA cycloaddition reaction between 1,2,4,5-tetrazines and strained alkene dienophiles aid with properties like selective bioconjugation, swift and high yielding bioorthogonal reactions are emergent in the development of radiopharmaceutical. Due to its fast pharmacokinetics, the in vivo formed radioimmunoconjugates can be imaged at earlier time points by short-lived radionuclides like 18F and 68Ga; it can also reduce radiation damage to the normal cells. Ultimately, this review elucidates the updated status of pretargeting based on antibodies and IEDDA for tumor diagnosis (PET and SPECT) and therapy.

The Inhibitory Effects of Cordycepin (3'-deoxyadenosine) on Thapsigargin-enhanced Cytosolic $Ca^{2+}$-influx and -mobilization in Human Platelets

  • Cho, Hyun-Jeong;Park, Hwa-Jin
    • 대한의생명과학회지
    • /
    • 제15권4호
    • /
    • pp.273-279
    • /
    • 2009
  • Cordycepin (3'-deoxyadenosine) is an adenosine analogue isolated from Cordyceps militaris, and it has been used as an anti-cancer and anti-inflammation ingredient in traditional Chinese medicine. We investigated the effects of cordycepin on human platelet aggregation induced by thapsigargin, and determined the cytosolic free $Ca^{2+}$ levels ($[Ca^{2+}]_i$), an aggregation-stimulating factor. Cordycepin significantly inhibited thapsigargin-induced platelet aggregation. Its inhibitory effect was continually sustained at the maximal aggregation concentration of thapsigargin. The thapsigargin-induced $[Ca^{2+}]_i$ were clearly reduced by cordycepin in the presence of exogenous $CaCl_2$ or extracellular $Ca^{2+}$-chelator (EDTA). These results suggest that cordycepin inhibited thapsigargin-induced $Ca^{2+}$-influx from extracellular domain and thapsigargin-induced $Ca^{2+}$-mobilization from intracellular $Ca^{2+}$ storage. Accordingly, our data demonstrated that cordycepin may have a beneficial effect on platelet aggregation-mediated thrombotic diseases by inhibiting a $[Ca^{2+}]_i$-elevation.

  • PDF

Requirement of EGF Receptor Kinase for Signaling by Calcium-Induced ERK Activation and Neurite Outgrowth in PC12 Cells

  • Park, Jung-Gyu;Jo, Young-Ah;Kim, Yun-Taik;Yoo, Young-Sook
    • BMB Reports
    • /
    • 제31권5호
    • /
    • pp.468-474
    • /
    • 1998
  • Membrane depolarization in PC12 cells induces calcium influx via an L-type voltage-sensitive calcium channel (L-VSCC) and increases intracellular free calcium, which leads to tyrosine phosphorylation of epidermal growth factor (EGF) receptor and the associated adaptor protein, She. This activated EGF receptor complex then can activate mitogen-activated protein (MAP) kinase, as in nerve growth factor (NGF) receptor activation. In the present study, we investigated the role of EGF receptor in the signaling pathway initiated by membrane depolarization of PC12 cells. Prolonged membrane depolarization induced phosphorylation of extracellular signal-regulated kinase (ERK) within 1 min in undifferentiated PC12 cells. Pretreatment of PC12 cells with the calcium chelator EGTA abolished depolarization-stimulated ERK phosphorylation, but NGF-induced phosphorylation of ERK was not affected. The chronic treatment of phorbol ester, which down-regulated the activity of protein kinase C (PKC), did not affect the phosphorylation of ERK upon depolarization. In the presence of an inhibitor of EGF receptor, neither depolarization nor calcium ionophore increased the level of ERK phosphorylation. These data imply that the EGF receptor is functionally necessary to activate ERK and neurite outgrowth in response to the prolonged depolarization in PC12 cells, and also that PKC is apparently not involved in this signaling pathway.

  • PDF

Amelioration of $Cd^{++}$ Toxicity by $Ca^{++}$ on Germination, Growth and Changes in Anti-Oxidant and Nitrogen Assimilation Enzymes in Mungbean(Vigna mungo) Seedlings

  • Kochhar Sunita;Ahmad Gayas;Kochhar Vinod Kumar
    • Journal of Plant Biotechnology
    • /
    • 제6권4호
    • /
    • pp.259-264
    • /
    • 2004
  • The present study describes the ameliorating effect of $Ca^{++}\;on\;Cd^{++}$ toxicity on the germination, early growth of mungbean seedlings, nitrogen assimilation enzyme. s-nitrate reductase (NR), nitrite reductase (NIR), anti-oxidant enzymes (POD, CAT and SOD) and on the accumulation of hydrogen peroxide and sulphydryls. $Cd^{++}$ inhibited seed germination and root and shoot length of seedlings. While NR activity was down- regulated, the activities of NIR, POD and SOD were up- regulated with $Cd^{++}$ treatment. $Cd^{++}$ treatment also increased the accumulation of sulphydryls and peroxides, which is reflective of increased thiol rich proteins and oxidative stress. $Ca^{++}$ reversed the toxic effects of $Cd^{++}$ on germination and on early growth of seedlings as well as on the enzyme activities, which were in turn differentially inhibited with a combined treatment with calcium specific chelator EGTA. The results indicate that the external application of $Ca^{++}$ may increase the tolerance capacity of plants to environmental pollutants by both up and down regulating metabolic activities. Abbreviations: $Cd^{++}= cadmium,\;Ca^{++} = calcium$, NR= nitrate reductase, NIR=nitrite reductase, POD = peroxidse, SOD= superoxide dismutase, CAT= catalase, EGTA= ethylene glycol-bis( $\beta-aminoethyl ether$)-N,N,N,N-tetraacetic acid.

B16 흑색종세포에서 싸이클로스포린 A에 의한 멜라닌 합성 촉진효과에 미치는 칼슘-활성 염소 통로의 역할 (Role of Ca2+-activated Cl- Channels in the Stimulation of Melanin Synthesis Induced by Cyclosporin A in B16 Melanoma Cells)

  • 이용수
    • 약학회지
    • /
    • 제59권4호
    • /
    • pp.177-183
    • /
    • 2015
  • The mechanism of melanogenesis induced by cyclosporin A (CsA) was investigated in B16 melanoma cells. CsA stimulated the production of melanin in a dose-dependent manner in the cells. In addition, CsA increased intracellular $Ca^{2+}$ concentration in a dose-related fashion. Treatment with BAPTA/AM, an intracellular $Ca^{2+}$ chelator significantly inhibited the CsA-induced intracellular melanin synthesis. CsA profoundly induced $Cl^-$ efflux, which was significantly blocked by niflumic acid (NFA) and flufenamic acid (FFA), specific and nonspecific inhibitors of $Ca^{2+}$-activated $Cl^-$ channels (CaCCs), respectively. Furthermore, these inhibitors of CaCCs significantly inhibited the CsA-induced stimulation of melanin synthesis. Taken together, these results suggest that the activation of CaCCs may play an important role in the CsA-induced stimulation of melanin synthesis in B16 cells. These results further suggest that CaCCs may be a good target for the management of hyperpigmentation of the skin reported in the patients treated with CsA.