• Title/Summary/Keyword: Chelating

Search Result 720, Processing Time 0.023 seconds

Antioxidative Activities of Methanol Extracts from Different Parts of Chrysanthemum zawadskii (구절초의 부위별 메탄올 추출물의 항산화활성)

  • Chung, Hai-Jung;Jeon, In-Sook
    • Food Science and Preservation
    • /
    • v.18 no.5
    • /
    • pp.739-745
    • /
    • 2011
  • The major objective of this study was to investigate the antioxidant activities of methanolic extracts from different parts (flower, leaf stem, and root) of Chrysanthemum zawadskii by employing various in-vitro assay systems. The extraction yields from the flower, leaf stem, and root were 18.347, 12.93, and 11.33-----, respectively. The total polyphenol content was highest in the flower (17.16 mg/100 g) and lowest in the root (11.33 mg/100 g). The antioxidant activities were raised within creasing amounts of extracts, and the extracts from the flower showed the highest effect on the superoxide anion radical scavenging, metal chelating on ferrous ions and reducing power. In addition, the leaf stem also showed good antioxidant activity in various systems. These results suggest that the methanolic extracts from the flower and leaf stem possess excellent antioxidant activities and may thus serve as potential sources of natural antioxidants.

Action Mechanism of LB10522, a New Catechol-Substituted Cephalosporin (카테콜 치환체를 가진 세파로스포린계 항생제 LB10522의 작용기전)

  • Kim, Mu-Yong;Oh, Jeong-In;Paek, Kyoung-Sook;Kim, In-Chull;Kwak, Jin-Hwan
    • YAKHAK HOEJI
    • /
    • v.40 no.1
    • /
    • pp.102-111
    • /
    • 1996
  • LB10522 is a new parenteral broad spectrum cephalosporin with a catechol moiety at C-7 position of beta-lactam ring. This compound can utilize tonB-dependent iron transp ort system in addition to porin proteins to enter bacterial periplasmic space and access to penicillin-binding proteins (PBPs) which are the lethal targets of ${\beta}$-lactam antibiotics. The chelating activity of LB10522 to metal iron was measured by spectrophotometrically scanning the absorbance from 200 to 900nm. When $FeCl_3$ was added, optical density was increased between 450 and 800nm. LB10522 was more active against gram-negative strains in iron-depleted media than in iron-replete media. This is due to the increased expression of iron transport channels in iron-depleted condition. LB10522 showed a similar activity against E. coli DC2 (permeability mutant) and E. coli DCO (wild type strain) in both iron-depleted and iron-replete media, indicating a minimal permeaility barrier for LB10522 uptake. LB10522 had high affinities to PBP 3 and PBP 1A, 1B of E. coli. By blocking these proteins, LB10522 caused inhibition of cell division and the eventual death of cells. This result was correlated well with the morphological changes in E. coli exposed to LB10522. Although the in vitro MIC of LB10522 against P. aeruginosa 1912E mutant (tonB) was 8-times higher than that of the P. aeruginosa 1912E parent strain, LB10522 showed a similar in vivo protection efficacy against both strains in the mouse systemic infection model. This result suggested that tonB mutant, which requires a high level of iron for normal growth, might have a difficulty in surviving in their host with an iron-limited environment.

  • PDF

Mixed Intramolecular Hydrogen Bonding in Dihydroxythiophene-based Units and Boron and Technetium Chelation

  • Ko, Sang-won;Park, Sang-Hyun;Gwon, Hui-Jeong;Lee, Jun-seong;Kim, Min-Jeong;Kwak, Yeon-ju;Do, Young-kyu;Churchill, David G.
    • Bulletin of the Korean Chemical Society
    • /
    • v.27 no.2
    • /
    • pp.243-250
    • /
    • 2006
  • Three novel potential metal ion chelating units have been synthesized and characterized: 5-hexylcarbamoyl-3,4-dihydroxythiophene-2-carboxylic acid methyl ester (5), 3-benzyloxy-4-hydroxythiophene-2,5-dicarboxylic acid bis-hexylamide (6), and 3,4-dihydroxythiophene-2,5-dicarboxylic acid bis-hexylamide (7). The crystal structure of 6 was obtained and suggests the presence of three distinct intramolecular hydrogen bonds, namely $[N_{amide}-H{\cdot}{\cdot}{\cdot}O]$ $[O-H{\cdot}{\cdot}{\cdot}O_{amide}]$ and $[N_{amide}-H{\cdot}{\cdot}{\cdot}S]$. Boron chelation with 5, 6 and 7 through the use of $BF_3, \;B(OH)_3 \;or \;B(OMe)_3$ was probed by $^1H$, $^{11}B$, and $^{13}C$ NMR spectroscopy. Technetium (I) chelation with 5, 6 and 7 was also studied via HPLC elutions using $[^{99m}Tc(CO)_3(OH_2)_3]^+$.

Isolation, Purification and Characterization of Antioxidative Bioactive Elastin Peptides from Poultry Skin

  • Nadalian, Mehdi;Kamaruzaman, Nurkhuzaiah;Yusop, Mohd Shakir Mohamad;Babji, Abdul Salam;Yusop, Salma Mohamad
    • Food Science of Animal Resources
    • /
    • v.39 no.6
    • /
    • pp.966-979
    • /
    • 2019
  • Muscle-based by-products are often undervalued although commonly reported having a high amount of natural bioactive peptides. In this study, elastin was isolated from the protein of broiler hen skin while its hydrolysate was prepared using Elastase. Assessment of antioxidative properties of elastin-based hydrolysate (EBH) was based on three different assays; 2,2-diphenyl-1-picryl-hydrazyl-hydrate (DPPH) radical, 2,2'-azinobis (3-ethylbenzothiazoline-6-sulphonic acid) (ABTS) radical and metal chelating ability. The EBH was purified further using ultrafiltration, gel filtration and Reverse- Phase High-Performance Liquid Chromatography (RP-HPLC). The IC50 of ABTS radical activities for EBH were decreased as EBH further purified using ultrafiltration (EBH III; 0.66 mg/mL)>gel filtration (EB-II; 0.42 mg/mL)>RP-HPLC (EB-II4; 0.12 mg/mL). The sequential identification of the peptide was done by matrix-assisted laser desorption/ionization time-of-flight/time-of-flight mass spectrometry (MALDI-TOF/ TOF-MS) of the potent fractions obtained from RP-HPLC (EB-II4). The presence of hydrophobic amino acids (Val and Pro) in the peptide sequences could potentially contribute to the high antioxidant activity of EBH. The sequences GAHTGPRKPFKPR, GMPGFDVR and ADASVLPK were identified as antioxidant peptides. In conclusion, the antioxidative potential from poultry skin specifically from elastin is evident and can be explored to be used in many applications such as health and pharmaceutical purposes.

Synthesis and Characterization of Core-Shell Silica-Phosphor Nanoparticles via Sol-Gel Process (Sol-gel 법을 이용한 코어-쉘 실리카-형광체의 제조 및 특성평가)

  • Shin, Weon Ho;Kim, Seyun;Jeong, Hyung Mo
    • Journal of Powder Materials
    • /
    • v.25 no.1
    • /
    • pp.12-18
    • /
    • 2018
  • Cost-effective functional phosphor nanoparticles are prepared by introducing low-cost $SiO_2$ spheres to rare-earth phosphor ($YVO_4:Eu^{3+}$, $YVO_4:Er^{3+}$, and $YVO_4:Nd^{3+}$) shells using a sol-gel synthetic method. These functional nanoparticles are characterized by X-ray diffraction, X-ray photoelectron spectroscopy, transmission electron microscopy, and general photoluminescence spectra. The $SiO_2$ sphere occupying the interior of the conventional phosphor is advantageous in significantly reducing the cost of expensive rare-earth phosphor nanoparticles. The sol-gel process facilitates the core-shell structure formation; the rare-earth shell phosphor has strong interactions with chelating agents on the surfaces of $SiO_2$ nanoparticles and thus forms layers of several nanometers in thickness. The photoluminescence wavelength is simply tuned by replacing the active materials of $Eu^{3+}$, $Er^{3+}$, and $Nd^{3+}$. Moreover, the photoluminescent properties of the core-shell nanoparticles can be optimized by manipulating the specific contents of active materials in the phosphors. Our simple approach substitutes low-cost $SiO_2$ for expensive rare-earth-based phosphor materials to realize cost-effective phosphor nanoparticles for various applications.

Hydrogel Dressing with a Nano-Formula against Methicillin-Resistant Staphylococcus aureus and Pseudomonas aeruginosa Diabetic Foot Bacteria

  • El-Naggar, Moustafa Y.;Gohar, Yousry M.;Sorour, Magdy A.;Waheeb, Marian G.
    • Journal of Microbiology and Biotechnology
    • /
    • v.26 no.2
    • /
    • pp.408-420
    • /
    • 2016
  • This study proposes an alternative approach for the use of chitosan silver-based dressing for the control of foot infection with multidrug-resistant bacteria. Sixty-five bacterial isolates were isolated from 40 diabetic patients. Staphylococcus aureus (37%) and Pseudomonas aeruginosa (18.5%) were the predominant isolates in the ulcer samples. Ten antibiotics were in vitro tested against diabetic foot clinical bacterial isolates. The most resistant S. aureus and P. aeruginosa isolates were then selected for further study. Three chitosan sources were tested individually for chelating silver nanoparticles. Squilla chitosan silver nanoparticles (Sq. Cs-Ag0) showed the maximum activity against the resistant bacteria when mixed with amikacin that showed the maximum synergetic index. This, in turn, resulted in the reduction of the amikacin MIC value by 95%. For evaluation of the effectiveness of the prepared dressing using Artemia salina as the toxicity biomarker, the LC50 was found to be 549.5, 18,000, and 10,000 μg/ml for amikacin, Sq. Cs-Ag0, and dressing matrix, respectively. Loading the formula onto chitosan hydrogel dressing showed promising antibacterial activities, with responsive healing properties for the wounds in normal rats of those diabetic rats (polymicrobial infection). It is quite interesting to note that no emergence of any side effect on either kidney or liver biomedical functions was noticed.

Characterization and Antioxidant Activity of the Exopolysaccharide Produced by Bacillus amyloliquefaciens GSBa-1

  • Zhao, Wen;Zhang, Jian;Jiang, Yun-Yun;Zhao, Xiao;Hao, Xiao-Na;Li, Liu;Yang, Zhen-Nai
    • Journal of Microbiology and Biotechnology
    • /
    • v.28 no.8
    • /
    • pp.1282-1292
    • /
    • 2018
  • The exopolysaccharide (EPS) produced by Bacillus amyloliquefaciens GSBa-1 was isolated and purified by ethanol precipitation, and DEAE-cellulose and Sepharose CL-6B chromatographies. The molecular mass of the purified EPS was determined to be 54 kDa. Monosaccharide analysis showed that the EPS was composed of predominantly glucose, and it was further confirmed by NMR spectroscopy to be ${\alpha}-glucan$ that consisted of a trisaccharide repeating unit with possible presence of two ${\alpha}-(1{\rightarrow}3)$ and one ${\alpha}-(1{\rightarrow}6)$ glucosidic linkages. Microstructural analysis showed that the EPS appeared as ellipsoid or globose with a smooth surface. The EPS had a degradation temperature at $240^{\circ}C$. Furthermore, the EPS had strong DPPH and hydroxyl radical scavenging activities, and moderate superoxidant anion scavenging and metal ion-chelating activities. This is the first characterization of a glucan produced by B. amyloliquefaciens with strong antioxidant activity. The results of this study suggest the potential of the EPS from B. amyloliquefaciens GSBa-1 to serve as a natural antioxidant for application in functional products.

Studies on the Radical Scavenging Effects and the Inhibitory Effects on ACE Activity of Several Flavonoids (각종 Flavonoids의 라디칼 봉쇄능과 ACE 활성 억제능에 관한 연구)

  • 강진훈
    • Journal of the Korean Society of Food Science and Nutrition
    • /
    • v.32 no.8
    • /
    • pp.1318-1322
    • /
    • 2003
  • This study was carried out to identify the biophysical utility of bioflavonoids by the determination of their antioxidative activities, radical scavenging activity and inhibitory effect on the ACE activity. The results obtained were as follows; All flavonoids experimented greatly inhibited the linoleic acid oxidation from the early period of oxidation, and the radical scavenging ability was also greater in genistein and daidzein than other flavonoids, generally showing donating ability. Rutin has the metal-chelating ability with C $u^{2+}$ and $Mg^{2+}$, which means to have the inhibitory effect on the promotive oxidation of lipid by metal ion. All flavonoids experimented inhibited the angiotensin converting enzyme (ACE) activity, which was greater in genistein and daidzein than other flavonoids.s.

Effects of Heat Processing Time on Total Phenolic Content and Antioxidant Capacity of Ginseng Jung Kwa

  • Oh, Chang-Ho;Kim, Gyo-Nam;Lee, Sang-Hyun;Lee, Jung-Sook;Jang, Hae-Dong
    • Journal of Ginseng Research
    • /
    • v.34 no.3
    • /
    • pp.198-204
    • /
    • 2010
  • Korean ginseng (Panax ginseng C.A. Meyer) preserved in syrup, known as ginseng Jung Kwa (GJK), is a popular traditional snack in Korea. We investigated the effects of heat processing time on total phenolic content and antioxidant capacity of GJK. Water extract was prepared from GJK with different heat processing times, 3 hours (GJK-3), 6 hours (GJK-6), or 12 hours (GJK-12), with sonication for 2 hours. The GJK extract contained total phenolic content in the following order: GJK-12 (2.28%)>GJK-6 (1.57%)>GJK-3 (1.29%). Both the peroxy and hydroxyl radical-scavenging activity and cellular antioxidant capacity of GJK extract was significantly enhanced with increasing heat processing time. The hydroxyl radical-scavenging activity of GJK-12 extract was greater than that of the GJK-3 and GJK-6 extracts, consistent with metal chelating capacity and reducing capacity. In a cellular model, the GJK extract effectively reduced 2,2'-azobis(2-amidinopropane) dihydrochloride, $Cu^{2+}$-, and $H_2O_2$-induced oxidative stress, with GJK-12 and GJK-6 extracts demonstrating greater cellular antioxidant capacity than the GJK-3 extract. These results suggest that heat processing time can contribute to the antioxidant capacity of GJK and that GJK extract may have the potential to be used as an effective dietary antioxidant to prevent oxidative stress-related diseases.

Concentration and separation of nickel from copper alloy dross using chelating regin (킬레이트 수지를 이용한 구리 합금 부산물에서의 니켈의 농축 및 분리)

  • Lee, Jung-Il;Kong, Man-Sik;Ryu, Jeong Ho
    • Journal of the Korean Crystal Growth and Crystal Technology
    • /
    • v.23 no.2
    • /
    • pp.114-118
    • /
    • 2013
  • Separation/recovery of valuable metals such as nickel or tin from copper based alloys has recently attracted from the viewpoints of environmental protection and resource recycling. In this report, preliminary study on concentration and separation of nickel from copper based alloy dross using selective adsorption by chelate resin was performed. The chelate resin used in this study has absorbed copper ions more easily than nickel ions in the metal solution, which could allow the concentration/separation of the nickel from the copper base alloy solution. The final molar ratios of Ni and Cu ions in the two concentrated solutions were 70 and 99 % respectively after three-time flowing the solution through the chelate resin column.