• Title/Summary/Keyword: Cheese fungi

Search Result 13, Processing Time 0.023 seconds

Prevention of Fungal Contamination during Cheese Ripening - Current Situation and Future Prospects (치즈 숙성 중의 곰팡이 오염 방제 - 현황과 전망)

  • Jung, Hoo Kil;Choi, Ha Nuel;Oh, Hyun Hee;Huh, Chang Ki;Yang, Hee Sun;Oh, Jeon Hui;Park, Jong Hyuk;Choi, Hee Young;Kim, Kyoung Hee;Lee, Seung Gu
    • Journal of Dairy Science and Biotechnology
    • /
    • v.30 no.2
    • /
    • pp.75-81
    • /
    • 2012
  • Molds cause severe cheese deterioration, even though some white and blue molds are used for the manufacture of Camembert and Blue cheese, respectively. The species of Geotrichum, Moniliella, Aspergillus, Penicillium, Mucor, Fusarium, Phoma, and Cladosporium are the main fungi that affect contamination during cheese ripening. Once deteriorated by fungal spoilage, cheese becomes toxic and inedible. Fungal deterioration of cheese decreases the nutritional value, flavor profiles, physicochemical and organoleptic properties, and increases toxicity and infectious disease. Fungal contamination during cheese ripening is highly damaging to cheese production in Korean farmstead milk processing companies. Therefore, these companies hesitate to develop natural and ripened cheese varieties. This article discusses the recent and ongoing developments in the removal techniques of fungal contamination during cheese ripening. There are 2 categories of antifungal agents: chemical and natural. Major chemical agents are preservatives (propionic acid, sodium propionate, and calcium propionate) and ethanol. Among the natural agents, grapefruit seed extract, phytoncide, essential oils, and garlic have been investigated as natural antifungal agents. Additionally, some studies have shown that antibiotics such as natamycin and Delvocid$^{(R)}$, have antifungal activities for cheese contaminated with fungi. Microbial resources such as probiotic lactic acid bacteria, Propionibacterium, lactic acid bacteria from Kimchi, and bacteriocin are well known as antifungal agents. In addition, ozonization treatment has been reported to inhibit the growth activity of cheese-contaminating fungi.

  • PDF

Antifungal activity against cheese fungi by lactic acid bacteria isolated from kimchi (김치 분리 유산균의 치즈 곰팡이 항진균 활성)

  • Choi, Ha Nuel;Oh, Hyun Hee;Yang, Hee Sun;Huh, Chang Ki;Bae, In Hyu;Lee, Jai Sung;Jeong, Yong Seob;Jeong, Eun Jeong;Jung, Hoo Kil
    • Food Science and Preservation
    • /
    • v.20 no.5
    • /
    • pp.727-734
    • /
    • 2013
  • The antifungal activity against cheese fungi by lactic acid bacteria isolated from kimchi was investigated. Eight fungi were isolated from cheese in the cheese ripening room. Two of them were identified as Penicillium and Cladosporium via ITS-5.8S rDNA analysis. Twenty-two species of lactic acid bacteria with antifungal activity were isolated from kimchi. Two of them were identified as Lactobacillus and Pediococcus via 16S rRNA sequence analysis. Of the 22 lactic acid bacteria species, six were selected (L. sakei subsp. ALJ011, L. sakei subsp. ALI033, L. sakei subsp. ALGy039, P. pentosaceus ALJ015, P. pentosaceus ALJ024 and P. pentosaceus ALJ026) due to their higher activity against the eight fungi isolated from cheese in the cheese ripening room; and among the six species, the P. pentosaceus ALJ015 and P. pentosaceus ALJ024 isolates from the Jeonju area kimchi and the L. sakei subsp. ALI033 isolate from the Iimsil area kimchi had higher antifungal activity than the other lactic acid bacteria. The minimum inhibitory concentration (MIC) of L. sakei subsp. ALI033 against the eight fungi isolated from cheese in the cheese ripening room was $62.5{\mu}g/mL$.

The Prevalence and Control of Spoilage Mold and Yeast in Cheese (치즈에서 부패를 일으키는 효모와 곰팡이의 다양성 및 저감법)

  • Kim, Jong-Hui;Kim, Bu-Min;Jeong, Seok-Geun;Oh, Mi-hwa
    • Journal of Dairy Science and Biotechnology
    • /
    • v.35 no.3
    • /
    • pp.152-161
    • /
    • 2017
  • Cheese is an excellent substrate for yeast and mold growth. These organisms can cause cheese spoilage, resulting in significant food wastage and economic losses. In the context of cheese spoilage, the presence and effects of spoilage or pathogenic bacteria are well documented. In contrast, although yeasts and molds are responsible for much dairy food wastage, only a few studies have examined the diversity of spoilage fungi. This article reviews the spoilage yeasts and molds affecting cheeses in various countries. The diversity and number of fungi present were found to depend on the type of cheese. Important fungi growing on cheese include Candida spp., Galactomyces spp., Debaryomyces spp., Yarrowia spp., Penicillium spp., Aspergillus spp., Cladosporium spp., Geotrichum spp., Mucor spp., and Trichoderma spp.. In addition, several mold spoilage species, such as Aspergillus spp. and Penicillium spp., are able to produce mycotoxins, which may also be toxic to humans. There are many ways to eliminate or reduce toxin levels in foods and feeds. However, the best way to avoid mycotoxins in cheese is to prevent mold contamination since there are limitations to mold degradation or detoxifications in cheese. Chemical preservatives, natural products, and modified atmosphere packaging have been used to prevent or delay mold spoilage and improve product shelf life and food safety.

Application of Lactic Acid Bacteria to Inhibit Fungal Contamination of Cured Cheeses (항곰팡이능 보유 유산균의 숙성치즈 적용 연구)

  • Kim, Jong-Hui;Lee, Eun-Seon;Kim, Bu-Min;Ham, Jun-Sang;Oh, Mi-Hwa
    • Journal of Dairy Science and Biotechnology
    • /
    • v.40 no.3
    • /
    • pp.103-109
    • /
    • 2022
  • Lactic acid bacteria with antibacterial activity can be effectively used as probiotics to inhibit the growth of harmful bacteria that cause food spoilage or food poisoning. In this study, Pediococcus pentosaceus M132-2, isolated from soybean paste, was analyzed for its effects on three major contaminating fungi. M132-2 was confirmed to exert antifungal activity by inhibiting the growth of all three fungi tested. In addition, M132-2 displayed excellent salt resistance and low temperature tolerance. Thus M132-2 can survive at the salinity level in cheese and at the low temperatures used in the aging process. Finally, when supernatant from an M132-2 culture was applied to Gouda cheese, the growth of contaminating fungi was significantly inhibited. Consequently, M132-2 may be useful for the prevention of spoilage of various foods, including cheese.

Potential of Antifungal Lactic Acid Bacteria Isolated from Kimchi as Cheese Starters (김치 분리 항진균 유산균의 치즈 스타터로서 이용 가능성)

  • Oh, Hyun Hee;Huh, Chang Ki;Choi, Ha Nuel;Yang, Hee Sun;Bae, In Hyu;Lee, Jai Sung;Jeong, Yong Seob;Lee, Nam Keun;Jung, Hoo Kil
    • Journal of Dairy Science and Biotechnology
    • /
    • v.31 no.2
    • /
    • pp.133-141
    • /
    • 2013
  • This study was performed to identify the cheese starter potential of antifungal lactic acid bacteria isolated from Kimchi. Eight fungi were isolated from cheese or the cheese ripening room, and identified as Penicillium and Cladosporium by ITS-5.8S rDNA analysis. Twenty-two lactic acid bacteria species with antifungal activity were isolated from Kimchi, and identified as Lactobacillus and Pediococcus by 16S rRNA sequence analysis. Six lactic acid bacteria species were selected (L. sakei subsp. ALJ011, L. sakei subsp. ALI033, L. sakei subsp. ALGy039, P. pentosaceus ALJ015, P. pentosaceus ALJ024, and P. pentosaceus ALJ026) based on higher antifungal activity from the initial 22 species. Out of the six identified species, L. sakei subsp. ALI033 had the highest antifungal activity. For growth of the six lactic acid bacteria, optimal temperature and pH were $30{\sim}37^{\circ}C$ and 7.0, respectively. Proteolytic activities of the six lactic acid bacteria were almost as strong as the commercial strain Str. thermophilus Body-1. Coagulative activities of L. sakei subsp. ALI033, P. pentosaceus ALJ015, and P. pentosaceus ALJ024 were higher than those of L. sakei subsp. ALJ011, L. sakei subsp. ALGy039, and P. pentosaceus ALJ026. The acid resistance of L. sakei subsp. was higher than that of P. pentosaceus. The major organic acid component of the lactic acid bacteria culture medium was lactic acid.

  • PDF

Microbiological Quality Assessment of a Local Milk Product, Kwacha Golla, of Bangladesh

  • Rahman, M.M.;Rahman, M.Mashiar;Arafat, S.M.;Rahman, Atiqur;Khan, M.Z.H.;Rahman, M.S.
    • Applied Biological Chemistry
    • /
    • v.51 no.4
    • /
    • pp.251-257
    • /
    • 2008
  • Different types of milk products, such as kwacha golla, mawa, cheese, curd, and chocolate are popular in Bangladesh. However, the microbiological safety of these products is poorly understood. This study was performed to assess the microbiological quality of kwacha golla, a local milk product. Kwacha golla samples were collected from ten different areas of Rajshahi and Kushtia regions, and the quality of the each sample was assessed using various parameters including standard plate count, total coliform, fecal coliform, total fungi, and spore-forming bacteria, as well as food-borne microorganisms. Out of 300 samples, total coliform was detected at 56.66% (n= 300), exceeding the minimum allowable limit of 36.66%. Similarly, experiments were carried out with fungi and food-borne pathogens including Escherichia coli, Listeria monocytogenes, Salmonella sp., and Staphylococcus aureus. Results revealed 85.33, 53, and 49.33% of the samples were contaminated by fungi, E. coli, and L. monocytogenes, respectively. However, all samples showed no contaminations of Salmonella sp. and Staphylococcus sp. Therefore, this study could be helpful to the people of Bangladesh by providing information on the possibility of a major health problem caused by the consumption of kwacha golla.

Identification of Antifungal Substances of Lactobacillus sakei subsp. ALI033 and Antifungal Activity against Penicillium brevicompactum Strain FI02

  • Huh, Chang Ki;Hwang, Tae Yean
    • Preventive Nutrition and Food Science
    • /
    • v.21 no.1
    • /
    • pp.52-56
    • /
    • 2016
  • This study was performed to investigate the antifungal substances and the antifungal activity against fungi of lactic acid bacteria (LAB) isolated from kimchi. LAB from kimchi in Imsil showed antifungal activity against Penicillium brevicompactum strain FI02. LAB LI031 was identified as Lactobacillus sakei subsp. Antifungal substances contained in L. sakei subsp. ALI033 culture media were unstable at high pH levels. Both, the control and proteinase K and protease treated samples showed clear zones, suggesting that the antifungal substances produced by ALI033 were non-protein substances unaffected by protesases. Both, the control and catalase showed clear zones, suggesting that the antifungal metabolite was not $H_2O_2$. The molecular weights of the antifungal substances were ${\leq}3,000Da$. The organic acid content of crude antifungal substances produced by L. sakei subsp. ALI033 showed high concentrations of lactic acid (502.47 mg/100 g). Therefore, these results suggest that antifungal substance produced by L. sakei subsp. ALI033 is most likely due to its ability in producing organic acid.

Inhibitory Activity of Lactic Acid Bacteria against Fungal Spoilage (유산균의 곰팡이 억제 활성)

  • Seol, Kuk-Hwan;Yoo, Jayeon;Yun, Jeonghee;Oh, Mi-Hwa;Ham, Jun-Sang
    • Journal of Dairy Science and Biotechnology
    • /
    • v.37 no.2
    • /
    • pp.83-93
    • /
    • 2019
  • Food spoilage by fungi is responsible for considerable food waste and economical losses. Among the food products, fermented dairy products are susceptible to deterioration due to the growth of fungi, which are resistant to low pH and can proliferate at low storage temperatures. For controlling fungal growth in dairy products, potassium sorbate and natamycin are the main preservatives used, and natamycin is approved by most countries for use in cheese surface treatment. However, a strong societal demand for less processed and preservative-free food has emerged. In the dairy products, lactic acid bacteria (LAB) are naturally present or used as cultures and play a key role in the fermentation process. Fermentation is a natural preservation technique that improves food safety, nutritional value, and specific organoleptic features. Production of organic acids is one of the main features of the LAB used for outcompeting organisms that cause spoilage, although other mechanisms such as antifungal peptides obtained from the cleavage of food proteins and competition for nutrients also play a role. More studies for better understanding these mechanisms are required to increase antifungal LAB available in the market.

Natural Benzoic Acid and Dairy Products: A Review (천연유래 안식향산과 유제품: 총설)

  • Lim, Sang-Dong;Kim, Kee-Sung
    • Journal of Dairy Science and Biotechnology
    • /
    • v.32 no.1
    • /
    • pp.37-45
    • /
    • 2014
  • Benzoic acid is widely used in the food industry as a preservative in acidic foods, owing to its antimicrobial activity against various bacteria, yeasts, and fungi. Benzoic acid occurs naturally in different foods such as fruits, vegetables, spices, and nuts as well as in milk and dairy products. Lactic acid bacteria convert hippuric acid, which is naturally present in milk, to benzoic acid; therefore, the latter could also be considered as a natural component of milk and milk products. Benzoic acid is also produced during the ripening of cheese by the propionic acid fermentation process that follows lactic acid fermentation. This paper, we provide basic information regarding the systematic control of natural benzoic acid levels in raw materials, processing intermediates, and final products of animal origin.

  • PDF

Comparison for enzymic activity of Nuruk and quality properties of Yakju by different fungi (곰팡이 균주에 따른 누룩의 효소활성 및 약주 품질특성 비교)

  • Huh, Chang-Ki;Kim, So-Mang;Kim, Yong-Doo
    • Food Science and Preservation
    • /
    • v.21 no.4
    • /
    • pp.573-580
    • /
    • 2014
  • The enzymatic activity of Nuruk and the quality properties of Yakju were investigated according to different fungi. The fungi that were used in this study were Aspergillus kawachii KCCM 32819, Aspergillus niger KCCM 32005, Rhizopus japonicus KCCM 11604, Rhizopus oryzae KCCM 11272, Rhizopus oryzae KCCM 11273, Rhizopus oryzae KCCM 11276, and Mucor rouxii KCCM 60148. The study results are as follows. The saccharogenic power of Rhizopus oryzae KCCM 11272 Nuruk was the highest (3,647.72 SP/g) among all the samples. The ${\alpha}$-amylase production and protease activities were highest (3.76 DU and 4.7 tyrosine mg/min, respectively) in the Rhizopus japonicus KCCM 11604 Nuruk. The pH levels of the Yakju made with commercial Nuruk and Rhizopus japonicus KCCM 11604 Nuruk were 4.14 and 4.07, respectively. The total titratable acid content of the Yakju made with Rhizopus oryzae KCCM 11273 Nuruk was the highest (0.56%) among all the samples. Rhizopus japonicus KCCM 11604 and Rhizopus oryzae KCCM 11272 had the highest ethanol yields (15.18% and 15.10%, respectively). In the sensory evaluation carried out in this study, the panel preferred the Yakju made with Rhizopus japonicus KCCM 11604 Nuruk. Overall, however, the panel did not like the Yakju made with Aspergillus niger KCCM 32005 Nuruk.