• Title/Summary/Keyword: Chattering Alleviation

Search Result 30, Processing Time 0.021 seconds

Position Control of An Induction Motor With Chattering Alleviation Sliding Mode Controller (체터링 저감 슬라이딩 모우드 제어기에 의한 유도전동기 위치제어)

  • Kim, Duk-Heon;Kim, Sei-Chan;Yoo, Dong-Wook;Won, Chung-Yeon
    • Proceedings of the KIEE Conference
    • /
    • 1992.07b
    • /
    • pp.1221-1224
    • /
    • 1992
  • To obtain a robustness which is one of important characteristics needed in servo drive, the sliding mode control method is used as a control strategy. However, the undesired phenomenon of chattering is a serious problem. In this paper, an adaptive chattering alleviation algorithm for variable structure system control is proposed to solve this serious problem. Digital controller using the theory of chattering alleviation control is applied to the position control problem of an induction motor system. Comparisons of this algorithm with other variable structure system control algorithms indicate that the chattering can be alleviated. This controller is implemented using IBM-PC(8088 CPU) which controls current controlled PWM inverter consisted of IGBT as a switching device to drive motor.

  • PDF

Design of a Variable Structure Controller having Chattering Alleviation Characteristics for the Speed Control of Sinusoidal type Brushless DC Motor (정현파형 브러시리스 직류전동기의 속도 제어를 위한 채터링 저감 특성을 갖는 가변구조 제어기 설계)

  • 김세일;최중경;박승엽
    • Proceedings of the IEEK Conference
    • /
    • 1999.06a
    • /
    • pp.805-808
    • /
    • 1999
  • In this paper, a chattering alleviation ISM speed controller for the sinusoidal type BIDC motor is designed. Dead Zone function is proposed to change the chattering occurring in the transient state form high frequency to low frequency and time-varying gains are applied for the control input to eliminate the steady state excessive chattering in the conventional ISM. The proposed Dead Zone function represents the sliding layer composed of two switching surfaces and if a state vector exists in this layer, the chattering don’t occur. Simulation and experimental results confirm the useful effects of the above algorithm.

  • PDF

Chattering Alleviation using Integral Sliding Mode Control (ICCAS 2005)

  • Kim, Tae-Won;Kim, Min-Chan;Park, Seung-Kyu;Ahn, Ho-Gyun
    • 제어로봇시스템학회:학술대회논문집
    • /
    • 2005.06a
    • /
    • pp.1621-1623
    • /
    • 2005
  • The input chattering in the sliding mode control (SMC) is alleviated through a low pass filter. When the low pass filter is added to the original system, the overall system including the low pass filter dynamics can not satisfy the matching condition. So the integral SMC is applied for a main controller. A sliding surfaces are designed carefully to make the overall dynamics same with the nominal control system.

  • PDF

Improvement of Chattering Phenomena in Sliding Mode Control using Fuzzy Saturation Function (퍼지 포화함수를 이용한 슬라이딩 모드 제어의 채터링 현상 개선)

  • Yoo, Byung-Kook
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.12 no.2
    • /
    • pp.164-170
    • /
    • 2002
  • Sliding mode control, as a typical method of variable structure control, has the robust characteristics for the uncertainty and the disturbance of the nonlinear system. Because, however, sliding mode control input includes a sign function that Is discontinuous on the predefined switching surface, its applications are primarily limited by the need of alleviation or reduction of chattering. In this paper, we propose a chattering alleviation strategy based on a special nonlinear function and a fuzzy system. By using the proposed control scheme, we can reduce the steady state error. Its tracking performance is as fast as that of conventional method using the fixed boundary layer. Especially, in the proposed method, we can adjust the trade-off between the steady state error and the degree of chattering by regulating the proper range of the output variable of the fuzzy system. To verify the validity of the proposed algorithm, the analysis of the control method using the fixed boundary layer and the computer simulations are shown to compare with them.

Design of a Integral Sliding Mode Speed Controller having Chattering Alleviation Characteristics for the Sinusoidal type Brushless DC Motor (채터링 저감특성을 갖는 정현파형 브러시리스 직류전동기 (BLDC Motor)의 적분 슬라이딩 모드 속도제어기 설계)

  • Kim, Sei-Il;Choi, Jung-Keyng;Park, Seung-Yub
    • Journal of the Institute of Electronics Engineers of Korea SC
    • /
    • v.38 no.2
    • /
    • pp.1-11
    • /
    • 2001
  • In this paper, a chattering alleviation VSS controller for the sinusoidal type BLDC motor is designed. Dead Zone function is proposed to change the chattering occurring in the transient state from high frequency to low frequency and time varying gains arc applied for the control input to eliminate the steady state excessive chattering in the conventional ISM. The proposed Dead Zone function represents the sliding layer composed of two switching surfaces and if a state vector exists in this layer, the chattering don't occur. Simulation and experimental results confirm the useful effects of the above algorithm.

  • PDF

Disturbance Observer with Binary Control (바이너리제어를 이용한 외란관측기)

  • You, Wan-Sik;Kim, Yeung-Cheol;Kim, Young-Jo;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.297-299
    • /
    • 1995
  • In this paper, a disturbance observer with binary control is proposed to suppress the chattering of sliding mode observer in estimation of the external disturbance. Binary control has the properly of chattering alleviation in addition to advantages of the conventional sliding mode control. As a simulation result, it is confirmed that the robust and high precision position control is possible by the proposed binary observer.

  • PDF

Design of Adaptive Fuzzy Sliding Mode Controller for Chattering Reduction (채터링 감소를 위한 적응 퍼지 슬라이딩 모드 제어기의 설계)

  • Seo, Sam-Jun;Kim, Dong-Won;Park, Gwi-Tae
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.14 no.6
    • /
    • pp.752-758
    • /
    • 2004
  • In this paper, we proposed an adaptivefuzzy sliding control algorithm using gradient descent method to reduce chattering phenomenon which is viewed in variable control system. In design of FLC, fuzzy control rules are obtained from expert's experience and intuition and it is very difficult to obtain them. We proposed an adaptive algorithm which is updated by consequence part parameter of control rules in order to reduce chattering phenomenon and simultaneously to satistfy the sliding mode condition. The proposed algorithm has the characteristics which are viewed in conventional VSC, e.g. insensitivity to a class of disturbance, parameter variations and uncertainties in the sliding mode. To demonstrate its performance, the proposed control algorithm is applied to an inverted pendulum system. The results show that both alleviation of chattering and performance are achieved.

A Position Control of Brushless DC Motor for Power Installation with Binary Control (바이너리제어를 이용한 동력설비용 브러시리스 직류전동기의 위치제어)

  • 유완식;조규민;김영석
    • The Proceedings of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.9 no.4
    • /
    • pp.55-61
    • /
    • 1995
  • Variable structure control (VSC) can be used for the control of power plants required stability and robustness such as elevator control. It has no overshoot and is insensitive to parameter variations and disturbances in the sliding mode where the system structure is changed with the sliding surface in the center. But in the real system, VSC has a high frequency chattering which has a bad influence upon the control system proformances. In this paper, to alleviate the high frequency chattering, a binary controller (BC) with inertial type external loop is implemented by DSP and applied to position control of brushless DC motor. Binary controller has external loop to generate the continuous control input with the flexible variation of primary loop gain. Thus it has the property of chattering alleviation in addition to advantages of the conventional variable structure control.

  • PDF

Variable Structure Control using Inertial Coordinate-Operator Feedback (Inertial Coordinate-Operator Feedback을 이용한 가변구조제어)

  • You, Wan-Sik;Hur, Young-Jae;Kim, Young-Seok
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.465-467
    • /
    • 1994
  • A VSC with Inertial COFB(Coordinate-Operator Feedback) is presented for chattering alleviation. Athought the conventional sliding mode controller has good properties of robustness for disturbances or parameter variations, fast response, and easy implementation, there exists an inevitable chattering problem which deteriorates the control performance of system. VSC using Inertial COFB has properties of bounded feedback gain, reduced chattering, and robustness for disturbances or parameter variations. The validity of the proposed method is demonstrated through computer simulation for a position control of BLDCM.

  • PDF

Self Tuning Adaptive Fuzzy Sliding Mode Control for Uncertain Nonlinear Systems (불확실한 비선형 계통에 대한 자기 동조 적응 퍼지 슬라이딩 모드 제어)

  • Kim Dong-Sik;Park Gwi-Tae;Seo Sam-Jun
    • The Transactions of the Korean Institute of Electrical Engineers D
    • /
    • v.54 no.4
    • /
    • pp.228-234
    • /
    • 2005
  • In this paper, we proposed a self tuning adaptive fuzzy sliding control algorithms using gadient descent method to reduce chattering phenomenon which is viewed in variable control system. In design of FLC, fuzzy control rules are obtained from expert's experience and intuition and it is very difficult to obtain them. We proposed an adaptive algorithm which is automatically updated by consequence part parameter of control rules in order to reduce chattering phenomenon and simultaneously to satisfy the sliding mode condition. The proposed algorithm has the characteristics which are viewed in conventional VSC, e.g. insensitivity to a class of disturbance, parameter variations and uncertainties in the sliding mode. To demonstrate its performance, the proposed control algorithm is applied to an inverted pendulum system. The results show that both alleviation of chattering and performance are achieved.