• Title/Summary/Keyword: Chatter

Search Result 203, Processing Time 0.03 seconds

Characteristics of Chatter Stability Lobe in 2-DOF Machining System (2-DOF 가공시스템의 채터로브 거동연구)

  • Lee, Hyuk;Chin, Dohun;Yoon, Moonchul
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.18 no.7
    • /
    • pp.1-7
    • /
    • 2019
  • A chatter lobe analysis is frequently used to look at the chatter state. Even if there is a lot of research on chatter, chatter lobe characteristics are not well defined. In this study, the chatter lobe behavior according to several variables of vibration mode is verified for further clarity. The dynamic variables of the chatter model are defined and their behaviors on chatter lobe boundary are analyzed in detail. In this sense, the chatter model with 2-DOF (2-DOF) was used to analyze chatter stability characteristics. The discussed results are satisfying and these can be used for the prediction of chatter existence in machining processes of 2-DOF systems in several revolution range. These analyses indicate a better agreement for predicting an appropriate stability lobe over a wide detailed range of critical depths of cut in machining operation. The results allow an excellent prediction of chatter according to various static and dynamic variables in machining states. The behavior of chatter dynamic variables in machining were also discussed in detail. All these results can also be applied to other machining processes by establishing a chatter model in a 2-DOF system.

Diagnosis of chatter by using the chatter frequency-spindle speed diagram (채터 주파수-회전 속도 선도를 이용한 채터 진단에 관한 연구)

  • 이상호;이대형;박중윤;홍성욱
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 2000.11a
    • /
    • pp.261-264
    • /
    • 2000
  • This paper presents a method to identify the on-set of chatter by using the chatter frequency-spindle speed diagram for a milling spindle-workpiece system in face milling process. To this purpose, the eigenvalue problem approach using frequency response function is adopted for predicting both the chatter condition and chatter frequency. The chatter frequency -spindle speed diagram for various conditions is investigated throughout simulation and experiment to diagnose the chatter. The simulation and experimental results show that the chatter frequency-spindle speed diagram is useful for diagnosis of the on-set of chatter vibration.

  • PDF

A Study on In-Process Detection of Chatter Vibration in a Turning Process (선삭가공에 있어서 채터진동의 인프로세스 검출에 관한 연구 (I))

  • Koo, Youn-Yoog;Chung, Eui-Sik;Nam, Gung-Suk
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.8 no.3
    • /
    • pp.73-81
    • /
    • 1991
  • There have been many studies on chatter vibration in machining but there seems to be no regulations to decide the commencing point of chatter objectively. The development of an objective method which can estimate and detect chatter commencement is very much in need for automatic manufacturing systems, dynamic performance tests for machine tools, so on. In this study, therefore, the estimation and the in-process detection of chatter have been experi- mentally investigated for the turning process. As a result, the commencing point of chatter can be decided from the behavior of the maximum amplitude of the dynamic component of cutting force, where the maximum amplitude is suddenly increasing with the chatter commencement. Then the commencing point of chatter can be estimated practically by this method before the occurrence of excessive vibration. Also, it is possible to detect the occurence of chatter vibration through the in-process measurement, by monitoring the maximum amplitude of the dynamic component of cutting force.

  • PDF

Smart Compensation for Chatter Control of Machine-Tool (공작기계 채터진동 스마트 보정제어 기술)

  • Kim, Dong-Hong;Song, Jun-Yeob;Koh, Dong-Yeon
    • Journal of the Korean Society for Precision Engineering
    • /
    • v.32 no.1
    • /
    • pp.9-16
    • /
    • 2015
  • The machining-chatter stands for a sudden relative vibration appeared between a material and a tool while processing with a machine. This chatter is key factor that seriously affects the quality of processed materials as well as being a factor which causes serious damages to the tool and the machine. This study is related to the monitoring and smart control of chatter problem that can compensate machining-chatter faster and produce processed goods with more precision by autonomous compensation. The above-mentioned machining-chatter compensator includes the chatter vibration sensor and the chatter compensator that estimates the compensation value according to the sensor detecting the chatter vibration of machine-tool and the chatter vibration detected from the sensor while having a feature of being organized by interlocking with the machine-tool controller.

A Study on the Monitoring of Chatter Vibration Using Pattern Recognition in the Plunge Grinding (원통연삭시 휠속도 변화의 패턴인식을 이용한 채터감시에 관한 연구)

  • 이종열;송지복;곽재섭
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1995.10a
    • /
    • pp.28-32
    • /
    • 1995
  • Bacause the chatter vibration is a main factor to damage on the quality and integrity, The cure is required peticurity in cykinderical plunge grinding. The chatter vibration relatied with wheel speed, workpiece and infeed rate. Therefore, we expressed more credible normal signal and chatter signal Pattern in accrdiance with wheel speed and acquired RMS signal of the accelerrometer. In thos study, after finding the chatter pattern, we applied two parameters, standard deviation and Kurtosis, to Neural Network.

  • PDF

The Study of Chatter Frequency Using Wheel Speed In Conventional Grinding Machine (범용연삭기에서 휠속도를 이용한 Chatter 주파수에 관한 연구)

  • 송지복;김남경;이종렬
    • Proceedings of the Korean Society of Precision Engineering Conference
    • /
    • 1997.04a
    • /
    • pp.977-981
    • /
    • 1997
  • Because the chatter vibration is a main factor to damage on the quality, The cure is require peticually in cylinderical plunge grinding. The chatter vibration is with wheel speed, workpiece speed and infreed rate. Therefore, in this study, we expressed more credible chatter frequency in accordiance with wheel speed by FFT after accereleration sensing.

  • PDF

In-Process Chatter Detection Using Multiple Sensors in Turning (복합센서를 이용한 선삭가공중 채터발생의 검출)

  • 김기대;권원태;주종남
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.18 no.7
    • /
    • pp.1618-1631
    • /
    • 1994
  • In this paper, in-process chatter detection methodology which utilizes nondimensional characteristic variables is introduced. To obtain nondimensional chatter detection indexes which are constant regardless of the cutting conditions during machining with the same tool and workpiece material, both the cutting forces and accelerations are measured and processed in time and frequency domain. The indexes are calculated from the present and past value of the acceleration and cutting force signals in time and frequency domain. The chatter is identified when these chatter detection indexes are bigger than the threshold which is decided by preliminary experiments. The experiment shows that these indexes works very well in-process chatter detection.

Study on the real time chatter detection method during the high accurate grinding process (정밀연삭시 발생하는 채터진동 실시간 감시에 대한 연구)

  • Kim, InWoong;Lee, SunPyo;Choi, Hyun
    • Proceedings of the Korean Society for Noise and Vibration Engineering Conference
    • /
    • 2014.10a
    • /
    • pp.745-750
    • /
    • 2014
  • The chatter vibration in the machining process plays bad role in machining quality such as high roughness as well as tool life and machine failure. And the grinding process under this risk in the fully automated factory is exposed to the unexpected mass machining quality problem. Studying the vibration signal of the hub bearing grinding process, the reason of chatter vibration was explained with the specific machining pattern of chatter. And this study suggests the chatter detecting method in the production line, which is monitoring the peak acceleration level around the natural frequencies of the specimen, and calculating kurtosis value by assuming the chatter is related to the resonance of the specimen. The suggested method was applied to the vehicle hub bearing grinding process and proved good to detecting the chatter induced machining quality problem.

  • PDF

A Theory of Nonlinear Grinding Chatter Due to Loss of Contact between Grinding Wheel and Workpiece (接觸 離脫 現象 에 의한 非線型 硏削 채터의 解析 理論)

  • 김옥현;김성청;임영호
    • Transactions of the Korean Society of Mechanical Engineers
    • /
    • v.9 no.6
    • /
    • pp.706-713
    • /
    • 1985
  • It is clear that when the amplitude of grinding chatter increases enough the contact between grinding wheel and workpiece cannot be sustained and the loss of contact occurs during a period of grinding chatter. In this paper the behavior of nonlinear grinding chatter due to the loss of contact has been studied. A nonlinear grinding chatter loop is developed where the loss of contact is considered as a nonlinear element of asymmetrical gain. The analysis is carried out in the time domain by numerical simulation and also in the complex domain by use of describing function method. The results show that two typical patterns of nonlinear grinding chatter can originate from the nonlinearity. One is an irregular chatter frequency at starting stage decreases to the natural frequency of grinding structure while the chatter amplitude increases and decreases repeatedly. The other is a limit cycle chatter of which the amplitude and frequency converge to constant and remain. This nonlinear behavior of grinding chatter has been well analyzed by the describing function method and confirmed by the numerical simulation.

Virtual Dynamic Machining System for Chatter Detection and Avoidance (채터진동 검출 및 회피를 위한 가상 동적 가공시스템 구축)

  • Kim, H.;Jo, M.H.;Koo, J.Y.;Lee, J.H.;Kim, J.S.
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.23 no.3
    • /
    • pp.273-278
    • /
    • 2014
  • This study presents a chatter vibration avoidance program for the milling process. Chatter vibration has a negative effect on workpieces and spindle-tools. When chatter vibration occurs, the cutting tool is loaded dynamically, a chatter pattern is generated on the workpiece, and the tool life is reduced. The developed program is composed of various modules such as an FFT analyzer, an impact test analyzer, a chatter vibration indicator, and a spindle speed recommender. The proposed program is verified using an AISI D2 cutting experiment in milling process. The effect of chatter vibration on the machining condition can be simulated by the suggested method, and successfully exploited to avoid chatter vibration.