• Title/Summary/Keyword: Chat GPT

Search Result 254, Processing Time 0.024 seconds

Introduction to the Technology of Digital Groundwater (Digital Groundwater의 기술 소개)

  • Hyeon-Sik Kim
    • Proceedings of the Korea Water Resources Association Conference
    • /
    • 2023.05a
    • /
    • pp.10-10
    • /
    • 2023
  • 본질적으로 복잡하고 다양한 특성을 가지는 우리나라(도시, 농어촌, 도서산간, 섬 등)의 물 공급 시스템은 생활수준의 향상, 기후변화 및 가뭄위기, 소비환경 중심의 요구와 한정된 수자원을 잘 활용하기 위한 운영 및 관리가 매우 복잡하다. 이로 인한 수자원 고갈과 가뭄위기 등에 관련한 대책 및 방안으로 대체수자원인 지하수 활용방안들이 제시되고 있다. 따라서, 물 관리 시스템과 관련한 디지털 기술은 오늘날 플랫폼과 디지털 트윈의 도입을 통해 네트워크와 가상현실 세계의 연결이 통합되어진 4차 산업혁명 사업이 현실화되고 있다. 물 관리 시스템에 사용된 새로운 디지털 기술 "BDA(Big Data Analytics), CPS(Cyber Physical System), IoT(Internet of Things), CC(Cloud Computing), AI(Artificial Intelligence)" 등의 성장이 증가함에 따라 가뭄대응 위기와 도시 지하수 물 순환 시스템 운영이 증가하는 소비자 중심의 수요를 충족시키기 위해서는 지속가능한 지하수 공급을 효과적으로 관리되어야 한다. 4차 산업혁명과 관련한 기술성장이 증가함으로 인한 물 부문은 시스템의 지속가능성을 향상시키기 위해 전체 디지털화 단계로 이동하고 있다. 이러한 디지털 전환의 핵심은 데이터에 관한 것이며, 이를 활용하여 가치 창출을 위해서 "Digital Groundwater Technology/Twin(DGT)"를 극대화하는 방식으로 제고해야 한다. 현재 당면하고 있는 기후위기에 따른 가뭄, 홍수, 녹조, 탁수, 대체수자원 등의 수자원 재해에 대한 다양한 대응 방안과 수자원 확보 기술이 논의되고 있다. 이에 따른 "물 순환 시스템"의 이해와 함께 문제해결 방안도출을 위하여 이번 "기획 세션"에서는 지하수 수량 및 수질, 정수, 모니터링, 모델링, 운영/관리 등의 수자원 데이터의 플랫폼 동시성 구축으로부터 역동적인 "DGT"을 통한 디지털 트윈화하여, 지표수-토양-지하수 분야의 특화된 연직 프로파일링 관측기술을 다각도로 모색하고자 한다. "Digital Groundwater(DG)"는 지하수의 물 순환, 수량 및 수질 관리, 지표수-지하수 순환 및 모니터링, 지하수 예측 모델링 통합연계를 위해 지하수 플랫폼 동시성, ChatGPT, CPS 및 DT 등의 복합 디지털화 단계로 나가고 있다. 복잡한 지하환경의 이해와 관리 및 보존을 위한 지하수 네트워크에서 수량과 수질 데이터를 수집하기 위한 스마트 지하수 관측기술 개발은 큰 도전이다. 스마트 지하수 관측기술은 BD분석, AI 및 클라우드 컴퓨팅 등의 디지털 기술에 필요한 획득된 데이터 분석에 사용되는 알고리즘의 복잡성과 데이터 품질에 따라 영향을 미칠 수 있기 때문이다. "DG"는 지하수의 정보화 및 네트워크 운영관리 자동화, 지능화 등을 위한 디지털 도구를 활용함으로써 지표수-토양층-지하수 네트워크 통합관리에 대한 비전을 만들 수 있다. 또한, DGT는 지하수 관측센서의 1차원 데이터 융합을 이용한 지하수 플랫폼 동시성과 디지털 트윈을 연계할 수 있다.

  • PDF

The Use of Generative AI Technologies in Electronic Records Management and Archival Information Service (전자기록관리 업무 및 기록정보서비스에서의 생성형 AI 기술 활용)

  • Yoona Kang;Hyo-Jung Oh
    • Journal of Korean Society of Archives and Records Management
    • /
    • v.23 no.4
    • /
    • pp.179-200
    • /
    • 2023
  • Records management institutions in Korea generally face a situation where they lack the workforce to manage the vast amount of electronic records. If electronic records management tasks and archival information services can be automated and intelligentized, the workload can be reduced and the service satisfaction of users can be improved. Therefore, this study proposes to utilize "generative AI" technology in records management practice. To achieve this, the study first examined previous research that aimed to intelligently automate various tasks in the field of records management. The fundamental concepts of generative AI were subsequently outlined, and domestic cases of generative AI applications were investigated. Next, the scope of applying generative AI to the field of records management was defined, and specific utilization strategies were proposed based on this. Regarding the strategies, the effectiveness was verified by presenting results from applying commercial generative AI services or citing examples from other fields. Lastly, the benefits and implications of using generative AI technology in the field of records management, as well as limitations that must be addressed in advance, were presented. This study holds significance in that it identified tasks within the field of records management where generative AI technology can be integrated and proposed effective utilization strategies tailored to those tasks.

Analysis and Forecast of Venture Capital Investment on Generative AI Startups: Focusing on the U.S. and South Korea (생성 AI 스타트업에 대한 벤처투자 분석과 예측: 미국과 한국을 중심으로)

  • Lee, Seungah;Jung, Taehyun
    • Asia-Pacific Journal of Business Venturing and Entrepreneurship
    • /
    • v.18 no.4
    • /
    • pp.21-35
    • /
    • 2023
  • Expectations surrounding generative AI technology and its profound ramifications are sweeping across various industrial domains. Given the anticipated pivotal role of the startup ecosystem in the utilization and advancement of generative AI technology, it is imperative to cultivate a deeper comprehension of the present state and distinctive attributes characterizing venture capital (VC) investments within this domain. The current investigation delves into South Korea's landscape of VC investment deals and prognosticates the projected VC investments by juxtaposing these against the United States, the frontrunner in the generative AI industry and its associated ecosystem. For analytical purposes, a compilation of 286 investment deals originating from 117 U.S. generative AI startups spanning the period from 2008 to 2023, as well as 144 investment deals from 42 South Korean generative AI startups covering the years 2011 to 2023, was amassed to construct new datasets. The outcomes of this endeavor reveal an upward trajectory in the count of VC investment deals within both the U.S. and South Korea during recent years. Predominantly, these deals have been concentrated within the early-stage investment realm. Noteworthy disparities between the two nations have also come to light. Specifically, in the U.S., in contrast to South Korea, the quantum of recent VC deals has escalated, marking an augmentation ranging from 285% to 488% in the corresponding developmental stage. While the interval between disparate investment stages demonstrated a slight elongation in South Korea relative to the U.S., this discrepancy did not achieve statistical significance. Furthermore, the proportion of VC investments channeled into generative AI enterprises, relative to the aggregate number of deals, exhibited a higher quotient in South Korea compared to the U.S. Upon a comprehensive sectoral breakdown of generative AI, it was discerned that within the U.S., 59.2% of total deals were concentrated in the text and model sectors, whereas in South Korea, 61.9% of deals centered around the video, image, and chat sectors. Through forecasting, the anticipated VC investments in South Korea from 2023 to 2029 were derived via four distinct models, culminating in an estimated average requirement of 3.4 trillion Korean won (ranging from at least 2.408 trillion won to a maximum of 5.919 trillion won). This research bears pragmatic significance as it methodically dissects VC investments within the generative AI domain across both the U.S. and South Korea, culminating in the presentation of an estimated VC investment projection for the latter. Furthermore, its academic significance lies in laying the groundwork for prospective scholarly inquiries by dissecting the current landscape of generative AI VC investments, a sphere that has hitherto remained void of rigorous academic investigation supported by empirical data. Additionally, the study introduces two innovative methodologies for the prediction of VC investment sums. Upon broader integration, application, and refinement of these methodologies within diverse academic explorations, they stand poised to enhance the prognosticative capacity pertaining to VC investment costs.

  • PDF

A Study on the Medical Application and Personal Information Protection of Generative AI (생성형 AI의 의료적 활용과 개인정보보호)

  • Lee, Sookyoung
    • The Korean Society of Law and Medicine
    • /
    • v.24 no.4
    • /
    • pp.67-101
    • /
    • 2023
  • The utilization of generative AI in the medical field is also being rapidly researched. Access to vast data sets reduces the time and energy spent in selecting information. However, as the effort put into content creation decreases, there is a greater likelihood of associated issues arising. For example, with generative AI, users must discern the accuracy of results themselves, as these AIs learn from data within a set period and generate outcomes. While the answers may appear plausible, their sources are often unclear, making it challenging to determine their veracity. Additionally, the possibility of presenting results from a biased or distorted perspective cannot be discounted at present on ethical grounds. Despite these concerns, the field of generative AI is continually advancing, with an increasing number of users leveraging it in various sectors, including biomedical and life sciences. This raises important legal considerations regarding who bears responsibility and to what extent for any damages caused by these high-performance AI algorithms. A general overview of issues with generative AI includes those discussed above, but another perspective arises from its fundamental nature as a large-scale language model ('LLM') AI. There is a civil law concern regarding "the memorization of training data within artificial neural networks and its subsequent reproduction". Medical data, by nature, often reflects personal characteristics of patients, potentially leading to issues such as the regeneration of personal information. The extensive application of generative AI in scenarios beyond traditional AI brings forth the possibility of legal challenges that cannot be ignored. Upon examining the technical characteristics of generative AI and focusing on legal issues, especially concerning the protection of personal information, it's evident that current laws regarding personal information protection, particularly in the context of health and medical data utilization, are inadequate. These laws provide processes for anonymizing and de-identification, specific personal information but fall short when generative AI is applied as software in medical devices. To address the functionalities of generative AI in clinical software, a reevaluation and adjustment of existing laws for the protection of personal information are imperative.