• Title/Summary/Keyword: Chassis parts

Search Result 66, Processing Time 0.025 seconds

Development of Automotive Lower Ann using Hybrid Manufacturing Process (하이브리드 제조공정을 이용한 자동차 로어암의 개발)

  • So, Sang-Woo;Hwang, Hyun-Tae;Lee, Jong-Hyun;Choi, Hung-Won
    • Journal of the Korean Society of Manufacturing Technology Engineers
    • /
    • v.20 no.2
    • /
    • pp.214-218
    • /
    • 2011
  • In order to survive in turbulent and competitive markets, automotive part manufacturers try efforts to develop new manufacturing technologies for ultra-lightweight, high-intensity and environmentally-friendly parts. Most of front lower arm is manufactured by welding process between upper- and lower panel which are produced by press stamping process. Because lower arm mounted on the cross member parts is one of the important complementary parts. So, to improve safety and lightweight of these parts, hybrid technologies are used in this paper. As hybrid technologies are applied to be front sub-frame, rear cross member and other chassis parts as well as front lower arm, the 20% lightweight has been achieved compared with existing steel parts.

Hydro-forming and Simulation of Cross Member Parts for Automotive Engine Cradle (차량 엔진크레들용 크로스멤버 부품의 하이드로-포밍가공 및 해석)

  • Kim, Kee-Joo;Lee, Yong-Heon;Bae, Dae-Sung;Sung, Chang-Won;Baik, Young-Nam;Sohn, Il-Seon
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.98-103
    • /
    • 2009
  • The environment and energy related problem has become one of the most important global issues in recent years. One of the most effective ways of improving the fuel efficiency of automobiles is the weight reduction. In order to obtain this goal the hydroforming technology has been adapting for the high strength steel and its application is being widened. In present study, the chassis components (mainly cross members of engine cradle) simulation and development by hydroforming technology to apply high strength steel having tensile strength of 440 MPa grade is studied. In the part design stage, it requires feasibility study and process design aided by CAE (Computer Aided Design) to confirm hydroformability in details. Overall possibility of hydroformable chassis parts could be examined by cross sectional analyses. Moreover, it is essential to ensure the formability of tube material on every forming step such as pre-bending, performing and hydroforming. In the die design stage, all the components of prototyping tool were designed and interference with press was investigated from the point of geometry and thinning.

The Study on Correlation and Transformation Matrix Development in terms of Loading Histories of Body and Chassis for CTBA Suspension (CTBA 샤시 부품과 마운팅부 차체 입력 하중과의 상관성 연구 및 변환행렬식 개발)

  • Ha, Dong-Hyun;Park, Soon-Cheol;Jung, Won-Wook
    • Journal of Applied Reliability
    • /
    • v.12 no.2
    • /
    • pp.79-90
    • /
    • 2012
  • The torsion beam type of rear suspension has been adopted by most manufactures of small to medium front wheel drive passenger cars. Previous studies analyzed only the load characteristics of CTBA(the coupled torsion beam axle)'s components. This paper analyzed the results of measurement after measuring loads and displacements, angles when a car equipped with the coupled torsion beam axle is driving in various roads. The most important durability factors for CTBA part are the force and direction of rear CTBA trailing arm. If there are design changes, it was difficult to make a sensor and install each time for measuring the trailing arm forces. After analyzing the loading histories between body and chassis, we developed the transformation matrix that can be converted to mutual force. This paper also deals with the analysis of the force behavior through the analysis of the influence and correlation between the body and chassis parts of cars.

Optimization for Component Noise Validation Test by Evaluation of Noise Control Factors for Suspension (현가장치 소음 발생인자 평가를 통한 부품소음 검증시험 최적화)

  • Son, Myungkoon;Lee, Taeyong;Lee, Sangbok;Lee, Seul
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.25 no.3
    • /
    • pp.344-349
    • /
    • 2017
  • Suspension noise from under a passenger car is one of the important factors that impact the perceptual quality for drivers. However, it is difficult to validate this by component level testing in the early stage of development, because suspension noise caused by interaction of the related parts has been found at saleable vehicles late during development or at the manufacturing stage, when many customers have already filed for claims. This study proposed a validation testing under research by the DFSS process that enables reproduction of vehicle level noise by component level testing using a shock absorber with the related parts, such as urethane bumper and top mount. This study also developed a compromised test matrix while analyzing the noise factors through experimental design and analysis of variance to determine what factors can affect noise. Based on this study, we expect that the vehicle level and customer claim can be validated during initial development timing by a more reliable component noise validation test.

Porosity Reduction during Gas Tungsten Arc-Gas Metal Arc Hybrid Welding of Zinc Coated Steel Sheets (II) - Hybrid Welding Results (GTA-GMA 하이브리드공정에 따른 자동차용 아연도금강판의 용접부 기공감소 (II) - 하이브리드공정 적용 결과)

  • Ahn, Young-Nam;Kim, Cheolhee
    • Journal of Welding and Joining
    • /
    • v.34 no.4
    • /
    • pp.48-54
    • /
    • 2016
  • The use of Zn coated steel has increased in the automotive industry due to its excellent corrosion resistance. Conventionally the BIW(body-in-white) structure and the hang-on parts have been made of Zn coated steel and more recently Zn coated steel began to be applied in the chassis parts. During gas metal arc (GMA) welding of the chassis part, lap fillet joint used to be adopted but spatter generation and porosities are most important concerns. In the industrial applications, an intentional joint gap was made to avoid the weld defects but it is not easy to control the size of joint gap. In this research, gas tungsten arc (GTA) is combined with GMA welding where GTA precedes GMA. As pulsed arc was adopted as GMA, GTA was oscillated along the longitudinal direction by pulsing GMA, but the arc oscillation did not disturb the molten droplet transfer of GMA welding. By increasing the distance between GTA and GMA, the length of weld pool increased and porosity could be reduced. Moreover porosity in the welds was fully removed when the distance between two arcs was 15 mm.

Development of aluminium chassis parts applied for Extruforming (알루미늄 익스트루포밍 샤시부품 개발 현찰)

  • Jang, G.W.;Lee, W.S.;Kim, D.E.;Oh, K.H.;Kim, J.C.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.337-340
    • /
    • 2006
  • Aluminum extruded profiles have been mostly used only a few automotive parts until now, such as roof rail, sunroof frame and bumper beams. However, Aluminum Extru-form technology, which was recently developed by foreign advanced manufacturer, made it possible to apply the aluminum extruded profiles to suspension parts of passenger and RV cars. It could be obtained by optimized billet casting, extrusion and stretch bending technology. It was possible to have the excellent weight reduction and the competitive price comparing with conventional process of aluminum for automotive parts. Combining additional process technology such as machining and joining, the application can be extended to various automotive parts. We have developed high strength aluminum alloy and fabricated subframe and suspension arm by extruforming process.

  • PDF

Experimental Study on the Hydraulic Power Steering System Noise (유압식 동력 조향장치의 소음에 대한 실험적 연구)

  • Lee, Byung-Rim;Choi, Young-Min;You, Chung-Jun
    • Transactions of the Korean Society of Automotive Engineers
    • /
    • v.17 no.2
    • /
    • pp.165-170
    • /
    • 2009
  • Pressure ripple, vibration and noise level are measured in each parts of the power steering system. MD(Mahalanobis Distance) is calculated by using MTS(Mahalanobis Taguchi System) with measured data, and noise sensitive components are selected. The components applied detail design parameters are made and data is measured. After that MD is calculated also. Mean value and SN ratio can be obtained from the MD. Effective noise reduction technique and dominant design parameters in hydraulic power steering system are introduced.

Development of Aluminum Subframe for Automobile (자동차용 경량 알루미늄 서브프레임 개발)

  • Kwon, T.W.;Kim, J.C.;Jeon, J.H.;Jang, G.W.;Lee, W.S.
    • Proceedings of the Korean Society for Technology of Plasticity Conference
    • /
    • 2006.05a
    • /
    • pp.292-294
    • /
    • 2006
  • The aluminum Subframe for automobile chassis part was developed using hybrid process, i.e. extruforming, press stamping and MIG welding. To achieve a 30 % weight reduction compared with convensional steel subframe keeping satisfactory performance, the design of cross-section of extruforming part was introduced, then forming simulation was performed and the final design was determined. In addition, we tried to estibilish optimun aluminum welding conditions for good penetration depth and few pore defect, finally the prototype of aluminum subframe was assembled using MIG welding method. Furthermore, we will adapt this technology to mass production and apply to the other chassis parts.

  • PDF

A study on the springback analysis of a curve monitor using a 3D scanner (3D 스캐너를 이용한 커브드 모니터의 스프링백 분석 연구)

  • Yoon, Hyoung-Woo;Lee, Chun-Kyu
    • Design & Manufacturing
    • /
    • v.12 no.3
    • /
    • pp.13-18
    • /
    • 2018
  • Flexible display tends to grow every year, It tends to be larger, slimmer, and higher in image quality. Therefore, accuracy is required in the manufacturing process of each part. In the curved monitor, the bottom chassis has a structure to which other parts can be attached. The accuracy of the curvature which the bottom chassis of the curve monitor monitors has is important. If the curvature error is large, serious defects such as cracks, warpage, twisting and the like occur. Curvature was analyzed using 3D scanner. In the Forming process and Restriking process steps, spring go occurred, and spring back occurred in the Notching process and Bending process steps. Even in the same process, it was confirmed that the curvature value varied depending on the formed shape.