• Title/Summary/Keyword: Charging-Discharging System

Search Result 235, Processing Time 0.028 seconds

Improvement of Battery Charging Efficiency of ESS for Wind Power Application Using DC-AC Hybrid Charging Pattern (직교류 합성 충전 패턴을 이용한 풍력 연계용 ESS의 배터리 충전 효율 향상)

  • Lee, Jong-Hak;Song, Seung-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.330-335
    • /
    • 2017
  • Increased fossil fuel consumption causes global warming, environmental pollution, and abnormal climate change. Wind-generated power installation is proposed to solve this problem. Recently, the wind power plant construction case encourages the installation of the energy storage system (ESS) to improve the intermittency of wind power. The maximized ESS operation profits connected to wind power are not generated in the simplest operation pattern of charging at night and discharging at day. The battery charging efficiency improvement should be considered to get more profits. Thus, there is a possibility of increasing ESS operation profits by analyzing the battery AC and DC charging/discharging efficiency and the yearly average sealed maintenance free (SMP) in hours. In this paper, the battery impedance characteristic, AC and DC charging/discharging efficiency, and the yearly average SMP are analyzed. The operation scenario to improve the ESS battery charging efficiency connected to wind power is proposed and verified via simulation.

Analysis of the battery charging and discharging system for spacecrafts (인공위성용 총방전 시스템의 해석)

  • 김영태;김희진
    • Journal of the Korean Institute of Telematics and Electronics B
    • /
    • v.32B no.6
    • /
    • pp.932-942
    • /
    • 1995
  • A spacecraft power system can be divided into two types : DET system(Direct Energy Transfer system) and PPT system(Peak Power Tracking system). In a DET system employing the regulated bus voltage control method, the battery charger and discharger are widely used for the bus voltage regulation. The battery charger has two different modes of operation. One is the bus voltage regulation mode and the other is the charge current regulation mode. The battery discharger is employed to provide the power when the spacecraft is in the earth's shadow or the sun is eclipsed. The operating mode, charging or discharging, is selected by a power control circuit. In this paper, small-signal dynamic characteristics of battery charging and discharging system are analyzed to facilitate design of control loop for optimum performance. Control loop designs in various operating modes are discussed. Anaylses are verified through experiments.

  • PDF

The Efficient Maintenance System of Lead-acid Battery Based on the Analysis of Charging/Discharging Current (충.방전 전류해석을 통한 납축전지의 효율적인 관리시스템)

  • 박영산;황종구
    • Journal of the Korea Institute of Information and Communication Engineering
    • /
    • v.8 no.1
    • /
    • pp.158-169
    • /
    • 2004
  • The efficient maintenance system of lead-acid battery was builted based cm analysis of charging and discharging current. This system was designed for the purpose of protecting the overdischarge of battery. So, We could protect the shortening lifetime of battery. It is checked the charging and discharging current of battery to decide the cut-off point by $\mu$-processor 80c196. Two current sensors were used to sense the current and the $\mu$-processer calculated amount of charging and discharging current of battery. And then display the state of charge.

Rapid Electric Vehicle Charging System with Enhanced V2G Performance

  • Kang, Taewon;Kim, Changwoo;Suh, Yongsug;Park, Hyeoncheol;Kang, Byungik;Kim, Simon
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.201-202
    • /
    • 2012
  • This paper presents a simple and cost-effective stand-alone rapid battery charging system of 30kW for electric vehicles. The proposed system mainly consists of active front-end rectifier of neutral point clamped 3-level type and non-isolated bi-directional dc-dc converter of multi-phase interleaved half-bridge topology. The charging system is designed to operate for both lithium-polymer and lithium-ion batteries. The complete charging sequence is made up of three sub-interval operating modes; pre-charging mode, constant-current mode, and constant-voltage mode. Each mode is operated according to battery states: voltage, current and State of Charging (SOC). The proposed system is able to reach the full-charge state within less than 16min for the battery capacity of 8kWh by supplying the charging current of 67A. The optimal discharging algorithm for Vehicle to the Grid (V2G) operation has been adopted to maintain the discharging current of 1C. Owing to the simple and compact power conversion scheme, the proposed solution has superior module-friendly mechanical structure which is absolutely required to realize flexible power expansion capability in a very high-current rapid charging system. Experiment waveforms confirm the proposed functionality of the charging system.

  • PDF

Low-cost crowbar system and protection scheme in capacitor bank module (커패시터 뱅크 모듈 구성에 있어서 경제적인 크로바 시스템과 보호회로)

  • Rim, Geun-Hie;Cho, Chu-Hyun;Lee, Hong-Sik;Pavlov, E.P.
    • Proceedings of the KIEE Conference
    • /
    • 2000.07c
    • /
    • pp.2089-2091
    • /
    • 2000
  • Pulsed power systems consist of a capacitor bank, an isolated high-voltage charging power-supply, high-current bus-work for charging and discharging and a control system. In such pulsed power systems, the operating-lifetime of the capacitors is closely dependent on the voltage reversal. Hence, most capacitor-discharging systems includes crowbar circuits. The crowbar circuit prevents the capacitor recharging with reverse voltage. Usually it consists of crowbar resistors and high pulse-current diode-stacks connected in series. The requirements for the diode-stacks are fast-recovery time and high-voltage and large-current ratings, which results in the high cost of the pulsed-power system. This paper presents a protection scheme of a charging and discharging system of a 500kJ capacitor bank using a low-cost crowbar circuit and safety-fuses.

  • PDF

A Design and Control of Bi-directional Non-isolated DC-DC Converter with Coupled Inductors for Rapid Electric Vehicle Charging System

  • Kang, Taewon;Kim, Changwoo;Suh, Yongsug;Park, Hyeoncheol;Kang, Byungil;Kim, Daegyun
    • Proceedings of the KIPE Conference
    • /
    • 2011.07a
    • /
    • pp.429-430
    • /
    • 2011
  • This paper presents a simple and cost-effective stand-alone rapid battery charging system of 30kW for electric vehicles. The proposed system mainly consists of active front-end rectifier of neutral point clamped 3-level type and non-isolated bi-directional dc-dc converter of multi-phase interleaved half-bridge topology with coupled inductors. The charging system is designed to operate for both lithium-polymer and lithium-ion batteries. The complete charging sequence is made up of three sub-interval operating modes; pre-charging mode, constant-current mode, and constant-voltage mode. The pre-charging mode employs the staircase shaped current profile to accomplish shorter charging time while maintaining the reliable operation of the battery. The proposed system is able to reach the full-charge state within less than 16min for the battery capacity of 8kWh by supplying the charging current of 67A. The optimal discharging algorithm for Vehicle to the Grid (V2G) operation has been adopted to maintain the discharging current of 1C. Owing to the simple and compact power conversion scheme, the proposed solution has superior module-friendly mechanical structure which is absolutely required to realize flexible power expansion capability in a very high-current rapid charging system.

  • PDF

A Study on the Development of the Charging-Discharging System with High Power Factor and High Efficiency (고역율, 고효율 충.방전기 개발에 관한 연구)

  • Kim, Eun-Soo;Joe, Kee-Yeon;Byun, Young-Bok
    • Proceedings of the KIEE Conference
    • /
    • 1994.07a
    • /
    • pp.568-572
    • /
    • 1994
  • This paper presents equipment for charging and discharging with high power factor aid high efficiency. This equipment is consisted of $3{\phi}$SPWM AC/DC converter for improving input current waveform and input power factor, and bidirectional DC/DC converter for electric isolation in the DC link Part. Therefore, Input power factor and the total efficiency in the proposed system can be increased more than in the conventional phase-controlled thyristor Charging - Discharging System.

  • PDF

Development of An Electric Circuit Model of Vehicle Charging-discharging System for Simulation (시뮬레이션을 위한 자동차 충 방전 시스템의 등가 회로 모델 개발)

  • Park, Hyun-Jin;SunWoo, Myoung-Ho;Lee, Jae-In
    • Proceedings of the KIEE Conference
    • /
    • 1999.11c
    • /
    • pp.570-572
    • /
    • 1999
  • An equivalent circuit model of vehicle charging-discharging system for simulation is developed. The vehicle electric power system consists of alternator and battery. The alternator must have adequate capacity for providing electric energy to all loads, and the battery supports the alternator by offering insufficient energy when the alternator output energy is not enough. The alternator model is simplified for the use of characteristic curve, which was provided by its manufacturer, and the battery model is separated in charging mode and discharging mode because of its complex characteristics. Developed circuit model is validated by comparing the simulation data and real experimental data.

  • PDF

Charging-Discharging System with High Power Factor, High Efficiency (고역률, 고효율 충.방전기)

  • Kim, Eun-Soo;Joe, Kee-Yeon;Byun, Young-Bok;Koo, Heun-Hoi
    • Proceedings of the KIEE Conference
    • /
    • 1995.07a
    • /
    • pp.371-375
    • /
    • 1995
  • This paper presents equipment for charging and discharging with high power factor and high efficiency. This equipment is consisted of $3{\phi}$ SPWM AC/DC converter for improving input current waveform and input power factor, and bidirectional DC/DC converter for electric isolation in the DC link Part. Therefore, Input power factor and the total efficiency in the proposed system can be increased more than in the conventional phase-controlled thyristor charging-discharging System.

  • PDF

Power Distribution Control Scheme for a Three-phase Interleaved DC/DC Converter in the Charging and Discharging Processes of a Battery Energy Storage System

  • Xie, Bing;Wang, Jianze;Jin, Yu;Ji, Yanchao;Ma, Chong
    • Journal of Power Electronics
    • /
    • v.18 no.4
    • /
    • pp.1211-1222
    • /
    • 2018
  • This study presents a power distribution control scheme for a three-phase interleaved parallel DC/DC converter in a battery energy storage system. To extend battery life and increase the power equalization rate, a control method based on the nth order of the state of charge (SoC) is proposed for the charging and discharging processes. In the discharging process, the battery sets with high SoC deliver more power, whereas those with low SoC deliver less power. Therefore, the SoC between each battery set gradually decreases. However, in the two-stage charging process, the battery sets with high SoC absorb less power, and thus, a power correction algorithm is proposed to prevent the power of each particular battery set from exceeding its rated power. In the simulation performed with MATLAB/Simulink, results show that the proposed scheme can rapidly and effectively control the power distribution of the battery sets in the charging and discharging processes.