• Title/Summary/Keyword: Charging stations

Search Result 80, Processing Time 0.032 seconds

Solving the Location Problem of Charging Station with Electric Vehicle Routing Problem (전기차량경로문제의 충전소 위치선정문제의 해법)

  • Gitae Kim
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.45 no.4
    • /
    • pp.217-224
    • /
    • 2022
  • Due to the issue of the sustainability in transportation area, the number of electric vehicles has significantly increased. Most automakers have decided or planned to manufacture the electric vehicles rather than carbon fueled vehicles. However, there are still some problems to figure out for the electric vehicles such as long charging time, driving ranges, supply of charging stations. Since the speed of growing the number of electric vehicles is faster than that of the number of charging stations, there are lack of supplies of charging stations for electric vehicles and imbalances of the location of the charging stations. Thus, the location problem of charging stations is one of important issues for the electric vehicles. Studies have conducted to find the optimal locations for the charging stations. Most studies have formulated the problem with deterministic or hierarchical models. In this paper, we have investigated the fluctuations of locations and the capacity of charging stations. We proposed a mathematical model for the location problem of charging stations with the vehicle routing problem. Numerical examples provide the strategy for the location routing problems of the electric vehicles.

Analysis of Hydrogen Sales Data at Hydrogen Charging Stations (수소 충전소의 수소 판매량 데이터 분석)

  • MINSU KIM;SUNGTAK JEON;TAEYOUNG JYUNG
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.3
    • /
    • pp.246-255
    • /
    • 2023
  • Due to lack of hydrogen charging stations and hydrogen supply compared to the supply of hydrogen vehicles, social phenomena such as 2-hour queues and restrictions on charging capacity are occurring, which negatively affects the spread of hydrogen vehicles. In order to resolve these problems, it is essential to have a strategic operation of the hydrogen charging stations. To establish operational strategies, it is necessary to derive customer demand patterns and characteristics through the analysis of sales data. This study derived the demand patterns and characteristics of customers visiting hydrogen charging stations through data analysis from various perspectives, such as charging volume, charging speed, number of visits, and correlation with external factors, based on the hydrogen sales data of off-site hydrogen charging stations located in domestic residential areas.

Optimal installation of electric vehicle charging stations connected with rooftop photovoltaic (PV) systems: a case study

  • Heo, Jae;Chang, Soowon
    • International conference on construction engineering and project management
    • /
    • 2022.06a
    • /
    • pp.937-944
    • /
    • 2022
  • Electric vehicles (EVs) have been growing to reduce energy consumption and greenhouse gas (GHG) emissions in the transportation sector. The increasing number of EVs requires adequate recharging infrastructure, and at the same time, adopts low- or zero-emission electricity production because the GHG emissions are highly dependent on primary sources of electricity production. Although previous research has studied solar photovoltaic (PV) -integrated EV charging stations, it is challenging to optimize spatial areas between where the charging stations are required and where the renewable energy sources (i.e., solar photovoltaic (PV)) are accessible. Therefore, the primary objective of this research is to support decisions of siting EV charging stations using a spatial data clustering method integrated with Geographic Information System (GIS). This research explores spatial relationships of PV power outputs (i.e., supply) and traffic flow (i.e., demand) and tests a community in the state of Indiana, USA for optimal sitting of EV charging stations. Under the assumption that EV charging stations should be placed where the potential electricity production and traffic flow are high to match supply and demand, this research identified three areas for installing EV charging stations powered by rooftop PV in the study area. The proposed strategies will drive the transition of existing energy infrastructure into decentralized power systems. This research will ultimately contribute to enhancing economic efficiency and environmental sustainability by enabling significant reductions in electricity distribution loss and GHG emissions driven by transportation energy.

  • PDF

Analysis of Construction Plans of Rapid Charging Infrastructures based on Gas Stations in Rural Areas to Propagate Electric Vehicles (전기자동차 보급을 위한 농촌지역의 주유소 기반 급속 충전인프라 구축 방안 분석)

  • Kim, Solhee;Kim, Taegon;Suh, Kyo
    • Journal of Korean Society of Rural Planning
    • /
    • v.21 no.1
    • /
    • pp.19-28
    • /
    • 2015
  • As environmental concerns including climate change drive the strong regulations for car exhaust emissions, electric vehicles attract the public eye. The purpose of this study is to identify rural areas vulnerable for charging infrastructures based on the spatial distributions of the current gas stations and provide the target dissemination rates for promoting electric cars. In addition, we develop various scenarios for finding optimal way to expand the charging infrastructures through the administrative districts data including 11,677 gas stations, the number of whole national gas stations. Gas stations for charging infrastructures are randomly selected using the Monte Carlo Simulation (MCS) method. Evaluation criteria for vulnerability assessment include five considering the characteristic of rural areas. The optimal penetration rate is determined to 21% in rural areas considering dissemination efficiency. To reduce the vulnerability, the charging systems should be strategically installed in rural areas considering geographical characteristics and regional EV demands.

A Study of Electronic Vehicle Charging Station Structure System Using PV(Photovoltaic) System (PV 시스템을 이용한 전기자동차 충전소의 구조시스템 연구)

  • Lim, Jae-Hwi;Yoon, Sung-Won
    • Journal of Korean Association for Spatial Structures
    • /
    • v.11 no.1
    • /
    • pp.105-112
    • /
    • 2011
  • Fundamental Electric vehicle charge system is urgently needed for commercialization of electric vehicles. Car parking building is equipped with PV system for providing electricity to charge electric vehicles, because it must be charged at least for 30 minutes. In parking lots abroad, electric car charging stations are installed to charge electric cars by the electricity gained from PV systems which are also installed. Also, charge infrastructure construction plans and electric car charging facility support standards are being set and proposed, but there are no cases like abroad of electric car charging stations using PV systems and only electric car charging stations using ordinary electricity are being proposed. Therefore, this paper prepares establishment of domestic electric car charging networks. By researching inside outside solar parking lots and cases of abroad PV system electric car charging stations, and by analysis and comparative analysis of structural systems, structural material, and etc., many cantilever structure and small-size types were installed in PV system electric car charging stations.

A Study to Determine the Optimized Location for Fast Electric Vehicle Charging Station Considering Charging Demand in Seoul (서울시 전기차 충전수요를 고려한 급속충전소의 최적입지 선정 연구)

  • Ji gyu Kim;Dong min Lee;Su hwan Kim
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.21 no.6
    • /
    • pp.57-69
    • /
    • 2022
  • Even though demand to charge EV(electric vehicles) is increasing, there are some problems to construct EV charging stations and problems from deficient them. Typical problem of EV charging stations is discordance for EV charging station location with its demand. This study investigates methods to determine the optimized location for fast EV charging stations considering charging demand in Seoul. Firstly, variables influencing on determination of determine the optimized location for fast EV charging stations were decided, and then evaluation of weights of the variables and data collection were conducted. Using the weights, location potential scores for each area-cell were calculated and optimized locations for fast EV charging stations were resulted.

Analysis of Vulnerable Districts for Electronic Vehicle Charging Infrastructure based on Gas Stations (주유소 기반의 전기자동차 충전인프라 구축에 대한 취약지역 분석)

  • Kim, Taegon;Kim, Solhee;Suh, Kyo
    • Journal of Korean Society of Rural Planning
    • /
    • v.20 no.4
    • /
    • pp.137-143
    • /
    • 2014
  • Car exhaust emissions are recognized as one of the key sources for climate change and electric vehicles have no emissions from tailpipe. However, the limited charging infrastructures could restrict the propagation of electric vehicles. The purpose of this study is to find the vulnerable districts limited to the charging station services after meeting the goal of Ministry of Knowledge Economy(12%). We assumed that the charging service can be provided by current gas stations. The range of the vulnerable grades was determined by the accessibility to current gas stations and the vulnerable regions were classified considering the optimal number of charging stations estimated by the efficiency function. We used 4,827 sub-municipal divisions and 11,677 gas station locations for this analysis. The results show that most of mountain areas are vulnerable and the fringe areas of large cities generally get a good grade for the charging infrastructure. The gangwon-do, jeollanam-do, gyeongsangbuk-do, and chungcheongnam-do include more than 40% vulnerable districts.

Review and Analyses of International Standards and Implications for Implementing Korean Hydrogen Charging Station in UAE (한국형 수소충전소의 UAE 구축을 위한 인허가 절차 검토 및 적용 방안 모색)

  • YOUNG-JI BYON;SEUNG HWAN KIM;GOANG SUNG JIN;YOUNG WOOK SEO;YOUNG SOON BAEK
    • Transactions of the Korean hydrogen and new energy society
    • /
    • v.34 no.6
    • /
    • pp.623-630
    • /
    • 2023
  • Recently, a hydrogen charging station-related memorandum of understanding (MOU) was signed between Korea Transport Institute and United Arab Emirates (UAE) Ministry of Transport in Abu Dhabi, creating a foundation for exporting green hydrogen charging stations and hydrogen powered public transit buses developed with Korean technology to Abu Dhabi. Reliable construction and operation of the charging stations require a thorough review on associated standards and legal requirements. In particular, it is essential to analyze currently effective standards related to hydrogen production, hydrogen vehicle charging, and hydrogen charging stations. This paper specifically focuses on comparative analysis of hydrogen-related standards in the UAE and the Republic of Korea. Similar to UAE, Korean hydrogen charging station-related standards follow International Organization for Standardization (ISO) standards. From real-life experiences in developing and operating charging stations, even more essence of ISO standards have been adopted in Korean standards than UAE. In particular, ISO standards related to fire prevention are additionally included in Korea. This paper also suggests procedural and administrative strategies for enabling application of Korean hydrogen charging station-related standards in UAE.

Evaluation of Operational Efficiency for Electric Vehicle Charging Stations Using Data Envelopment Analysis (자료포락분석을 이용한 전기차 충전소 운영효율성 평가)

  • Son, Dong-Hoon;Gang, Yeong-Su;Kim, Hwa-Joong
    • Journal of Korean Society of Industrial and Systems Engineering
    • /
    • v.43 no.3
    • /
    • pp.53-60
    • /
    • 2020
  • Evaluating the operational efficiency of electric vehicle charging stations (EVCSs) is important to understand charging network evolution and the charging behavior of electric vehicle users. However, aggregation of efficiency performance metrics poses a significant challenge to practitioners and researchers. In general, the operational efficiency of EVCSs can be measured as a complicated function of various factors with multiple criteria. Such a complex aspect of managing EVCSs becomes one of the challenging issues to measure their operational efficiency. Considering the difficulty in the efficiency measurement, this paper suggests a way to measure the operational efficiency of EVCSs based on data envelopment analysis (DEA). The DEA model is formulated as constant returns of output-oriented model with five types of inputs, four of them are the numbers of floating population and nearby charging stations, distance of nearby charging stations and traffic volume as desirable inputs and the other is the traffic speed in congestion as undesirable one. Meanwhile, the output is given by the charging frequency of EVCSs in a day. Using real-world data obtained from reliable sources, we suggest operational efficiencies of EVCSs in Seoul and discuss implications on the development of electric vehicle charging network. The result of efficiency measurement shows that most of EVCSs in Seoul are inefficient, while some districts (Nowon-gu, Dongdaemun-gu, Dongjak-gu, Songpa-gu, Guro-gu) have relatively more efficient EVCSs than the others.

Revenue Maximizing Scheduling for a Fast Electric Vehicle Charging Station with Solar PV and ESS

  • Leon, Nishimwe H.;Yoon, Sung-Guk
    • KEPCO Journal on Electric Power and Energy
    • /
    • v.6 no.3
    • /
    • pp.315-319
    • /
    • 2020
  • The modern transportation and mobility sector is expected to encounter high penetration of Electric Vehicles (EVs) because EVs contribute to reducing the harmful emissions from fossil fuel-powered vehicles. With the prospective growth of EVs, sufficient and convenient facilities for fast charging are crucial toward satisfying the EVs' quick charging demand during their trip. Therefore, the Fast Electric Vehicle Charging Stations (FECS) will be a similar role to gas stations. In this paper, we study a charging scheduling problem for the FECS with solar photovoltaic (PV) and an Energy Storage System (ESS). We formulate an optimization problem that minimizes the operational costs of FECS. There are two cost and one revenue terms that are buying cost from main grid power, ESS degradation cost, and revenue from the charging fee of the EVs. Simulation results show that the proposed scheduling algorithm reduces the daily operational cost by effectively using solar PV and ESS.