• Title/Summary/Keyword: Charging circuit

Search Result 286, Processing Time 0.03 seconds

Design of Capacitor Load Bank for Capacitive Current Switching Tests (진상소전류시험용 Capacitor Load Bank 설계)

  • Roh, Chang-Il;La, Dae-Ryeol;Kim, Sun-Koo;Jung, Heung-Soo;Kim, Won-Man;Lee, Dong-Jun
    • Proceedings of the KIEE Conference
    • /
    • 2002.11d
    • /
    • pp.106-108
    • /
    • 2002
  • Capacitive current switching test for circuit breaker and load breaker switch requires special attention because, after current interruption, the capacitive load contains an electrical charge and can cause dielectric restrike and re-ignition of the switching devices. therefore dielectric strength of capacitor load bank shall be able to withstand 4Vt (Vt : test voltage) and charging voltage discharged within 1 min. In this paper presents both characteristic of capacitive current switching tests and design of capacitor load bank.

  • PDF

A Novel Active Boost Power Converter for single phase SRM (단상 SRM 구동을 위한 새로운 능동 부스트 전력 컨버터)

  • Seok, Seung-Hun;Liang, Jianing;Lee, Dong-Heeㅋ;Ahn, Jin-Woo
    • Proceedings of the KIPE Conference
    • /
    • 2008.06a
    • /
    • pp.277-279
    • /
    • 2008
  • In this paper, a novel active boost converter for SR drive is proposed. An active capacitor circuit is added in the front-end. Based on this active capacitor network, when boost switch turns off, this network seems as passive capacitor network. And the voltage of boost capacitor can keep balance with dc-link voltage automatically. In the capacitor network, discharging voltage is general dc-link voltage in parallel-connected capacitors; charging voltage is double dc-link voltage in series-connected capacitors. When boost switch turns on, two capacitors are connected in series, and discharging voltage is up to double dc-link voltage. So the fast excitation current can be obtained from this mode. Profit from fast excitation and fast demagnetization mode, the performance and output power can be improved. Some computer simulations are done to verify the performance of proposed converter.

  • PDF

A Modified Charge Balancing Scheme for Cascaded H-Bridge Multilevel Inverter

  • Raj, Nithin;G, Jagadanand;George, Saly
    • Journal of Power Electronics
    • /
    • v.16 no.6
    • /
    • pp.2067-2075
    • /
    • 2016
  • Cascaded H-bridge multilevel inverters are currently used because it enables the integration of various sources, such as batteries, ultracapacitors, photovoltaic array and fuel cells in a single system. Conventional modulation schemes for multilevel inverters have concentrated mainly on the generation of a low harmonic output voltage, which results in less effective utilization of connected sources. Less effective utilization leads to a difference in the charging/discharging of sources, causing unsteady voltages over a long period of operation and a reduction in the lifetime of the sources. Hence, a charge balance control scheme has to be incorporated along with the modulation scheme to overcome these issues. In this paper, a new approach for charge balancing in symmetric cascaded H-bridge multilevel inverter that enables almost 100% charge balancing of sources is presented. The proposed method achieves charge balancing without any additional stages or complex circuit or considerable computational requirement. The validity of the proposed method is verified through simulation and experiments.

Electrical Characteristics for the Cu/Zn Chemical Cell using NaCl Electrolytes (NaCl 전해질을 사용한 Cu/Zn 화학전지의 전기적 특성)

  • Kim, Yong-Hyuk
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.59 no.7
    • /
    • pp.1259-1264
    • /
    • 2010
  • This paper was researched about effectiveness of the electrochemical cell which is composed of the sea water and the Cu/Zn electrode. The electric potential difference between copper and zinc finally reached 0.51 volts. Short current decreased with time. It might depend on the electromotive force decreasing. Confirmed the load resistance and electrode affect in electromotive force and electric current. The resistance which shows a maximum output power was 20[$\Omega$], and the maximum output power from this resistance was evaluated as 0.736mW. In order to calculate the energy which creates from electrochemical cell, charging voltage of the capacitor with various capacitance was investigated. It was found that energy harvesting possibility of the cell which is made of a sea water electrolyte and the copper/the zinc.

A Novel Five-Level Flying-Capacitor Dual Buck Inverter

  • Liu, Miao;Hong, Feng;Wang, Cheng-Hua
    • Journal of Power Electronics
    • /
    • v.16 no.1
    • /
    • pp.133-141
    • /
    • 2016
  • This paper focuses on the development of a Five-Level Flying-Capacitor Dual Buck Inverter (FLFCDBI) based on the main circuit of dual buck inverters. This topology has been described as not having any shoot-through problems, no body-diode reverse recovery problems and the half-cycle work mode found in the traditional Multi-Level Flying-Capacitor Inverter (MLFCI). It has been shown that the flying-capacitor voltages of this inverter can be regulated by the redundant state selection within one pole. The voltage balance of the flying-capacitors can be achieved by charging or discharging in the positive (negative) half cycles by choosing the proper logical algorithms. This system has a simple structure but demonstrates improved performance and reliability. The validity of this inverter is conformed through computer-aided simulation and experimental investigations.

SOC Estimation Based on OCV for NiMH Batteries Using an Improved Takacs Model

  • Windarko, Novie Ayub;Choi, Jae-Ho
    • Journal of Power Electronics
    • /
    • v.10 no.2
    • /
    • pp.181-186
    • /
    • 2010
  • This paper presents a new method for the estimation of State of Charge (SOC) for NiMH batteries. Among the conventional methods to estimate SOC, Coulomb Counting is widely used, but this method is not precise due to error integration. Another method that has been proposed to estimate SOC is by using a measurement of the Open Circuit Voltage (OCV). This method is found to be a precise one for SOC estimation. In NiMH batteries, the hysteresis characteristic of OCV is very strong compared to other type of batteries. Another characteristic of NiMH battery to be considered is that the OCV of a NiMH battery under discharging mode is lower than it is under charging mode. In this paper, the OCV is modeled by a simple method based on a hyperbolic function which well known as Takacs’s model. The OCV model is then used for SOC estimation. Although the model is simple, the error is within 10%.

Design and Implementation of DC Solid-State Circuit Breaker with Easy Charging Capability of Commutation Capacitor (전류 커패시터의 충전이 용이한 DC 반도체 차단기 설계 및 구현)

  • Kim, Jin-Young;Song, Seung-Min;Choi, Seung-soo;Kim, In-Dong;Choi, Sun Kyu
    • Proceedings of the KIPE Conference
    • /
    • 2017.07a
    • /
    • pp.304-305
    • /
    • 2017
  • AC 그리드에 비해 DC 그리드는 전류의 영교차점이 없으므로 사고전류를 신속하게 차단하지 못 한다면 아크나 스파크에 의한 전기화재가 발생하여 큰 피해가 따른다. 본 연구에서는 신속한 차단과 전류 커패시터를 쉽게 충전할 수 있는 구조가 간단한 새로운 DC SSCB를 제안한다. 제안하는 DC SSCB는 단락사고를 모의하여 시뮬레이션 및 실험을 통해 동작특성을 검증한다. 본 논문에서 연구한 DC SSCB는 향후 DC 그리드 시스템의 설계 및 구현에 활용될 것으로 기대된다.

  • PDF

Charging circuit for Micro-Power Generator (초소형 전원발생장치를 위한 축전 회로)

  • Park, Ju-Han;Kim, Ho-Seong;Kim, Hye-Joong
    • Proceedings of the KIEE Conference
    • /
    • 2006.07c
    • /
    • pp.1625-1626
    • /
    • 2006
  • 본 논문에서는 초소형 전원발생장치의 구현 방법에 따라 최대 출력을 얻을 수 있는 충전회로를 제안하였으며, 초소형 전원발생장치의 등가회로를 제시하였다. 이를 바탕으로 시뮬레이션을 하여 실제 실험과 비슷한 출력을 얻어 내었고, 초소형 전원 발생장치를 압전소자를 이용하여 구현하는 경우에는 누설전류가 작은 다이오드를 사용해야 하며, 유도기전력을 이용하여 구현하는 경우에는 전압강하가 작은 다이오드를 사용해야 한다는 것을 시뮬레이션과 실험을 통하여 확인하였다.

  • PDF

Automated Wireless Recharging for Small UAVs

  • Jung, Sunghun;Ariyur, Kartik B.
    • International Journal of Aeronautical and Space Sciences
    • /
    • v.18 no.3
    • /
    • pp.588-600
    • /
    • 2017
  • We develop a wireless, contact free power transfer mechanism that is safer than the direct metallic contact and robust to imperfect alignment on landing at the base station. A magnetic field is created using inductors on both the transmitting and receiving sides. We use the inductive wireless recharging to increase autonomy and decrease the sensor interference by reducing the inductor loop size. By locating four independent small receiver loops and corresponding four circuits around the quadrotor UAV, we can increase safety from circuit malfunctions in comparison to the use of just one loop. On the base station, four folding robotic bars are used to realign the receiver loops over the transmitter loops. After adequate recharging as measured by battery voltages or power consumption at the bae station, the UAV sends a signal to the base station to open the robotic bars and takes off once freed from the robotic bars.

Comparison of SOC estimation using EKF of the LiFePO4 cell according to minor loop in individual SOC range (EKF를 이용한 SOC 구간별 개별 Minor loop에 따른 LiFePO4 셀의 SOC 추정성능 비교분석)

  • Lee, Hyun-jun;Park, Joung-hu;Kim, Jonghoon
    • Proceedings of the KIPE Conference
    • /
    • 2015.07a
    • /
    • pp.397-398
    • /
    • 2015
  • 본 논문은 $LiFePO_4$ 셀의 SOC(State of Charge) 추정에서 가장 중요한 역할을 하는 모델 파라미터인 OCV(Open Circuit Voltage)의 설계에 관한 것이다. $LiFePO_4$ 셀은 히스테리시스 특성 때문에 Charging/Discharging OCV값을 이은 curve인 Major loop만으로는 신뢰도 높은 SOC 추정이 어렵다. 따라서, 기존의 Major loop에 추가적으로 SOC 10% 구간별로 Minor loop을 설계해 줌으로써 배터리 모델링의 정확도를 높이고, 이를 최종적으로 EKF(Extended Kalman Filter)알고리즘을 이용하여 SOC 추정으로 해봄으로써 정확도 향상을 비교해 보고 분석해 보고자 한다.

  • PDF