• Title/Summary/Keyword: Charging Scenario

Search Result 33, Processing Time 0.021 seconds

Analysis for Evaluating the Impact of PEVs on New-Town Distribution System in Korea

  • Choi, Sang-Bong
    • Journal of Electrical Engineering and Technology
    • /
    • v.10 no.3
    • /
    • pp.859-864
    • /
    • 2015
  • This paper analyzes the impact of Plug-in Electric vehicles(PEVs) on power demand and voltage change when PEVs are connected to the domestic distribution system. Specifically, it assesses PEVs charging load by charging method in accordance with PEVs penetration scenarios, its percentage of total load, and voltage range under load conditions. Concretely, we develop EMTDC modelling to perform a voltage distribution analysis when the PEVs charging system by their charging scenario was connected to the distribution system under the load condition. Furthermore we present evaluation algorithm to determine whether it is possible to adjust it such that it is in the allowed range by applying ULTC when the voltage change rate by PEVs charging scenario exceed its allowed range. Also, detailed analysis of the impact of PEVs on power distribution system was carried out by calculating existing electric power load and additional PEVs charge load by each scenario on new-town in Korea to estimate total load increases, and also by interpreting the subsequent voltage range for system circuits and demonstrating conditions for countermeasures. It was concluded that total loads including PEVs charging load on new-town distribution system in Korea by PEVs penetration scenario increase significantly, and the voltage range when considering ULTC, is allowable in terms of voltage tolerance range up to a PEVs penetration of 20% by scenario. Finally, we propose the charging capacity of PEVs that can delay the reinforcement of power distribution system while satisfying the permitted voltage change rate conditions when PEVs charging load is connected to the power distribution system by their charging penetration scenario.

Evaluation of the Charging effects of Plug-in Electrical Vehicles on Power Systems, taking Into account Optimal Charging Scenarios (전기자동차의 충전부하 모델링 및 충전 시나리오에 따른 전력계통 평가)

  • Moon, Sang-Keun;Gwak, Hyeong-Geun;Kim, Jin-O
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.6
    • /
    • pp.783-790
    • /
    • 2012
  • Electric Vehicles(EVs) and Plug-in Hybrid Electric Vehicles(PHEVs) which have the grid connection capability, represent an important power system issue of charging demands. Analyzing impacts EVs charging demands of the power system such as increased peak demands, developed by means of modeling a stochastic distribution of charging and a demand dispatch calculation. Optimization processes proposed to determine optimal demand distribution portions so that charging costs and demand can possibly be managed. In order to solve the problems due to increasing charging demand at the peak time, alternative electricity rate such as Time-of-Use(TOU) rate has been in effect since last year. The TOU rate would in practice change the tendencies of charging time at the peak time. Nevertheless, since it focus only minimizing costs of charging from owners of the EVs, loads would be concentrated at times which have a lowest charging rate and would form a new peak load. The purpose of this paper is that to suggest a scenario of load leveling for a power system operator side. In case study results, the vehicles as regular load with time constraints, battery charging patterns and changed daily demand in the charging areas are investigated and optimization results are analyzed regarding cost and operation aspects by determining optimal demand distribution portions.

A DQN-based Two-Stage Scheduling Method for Real-Time Large-Scale EVs Charging Service

  • Tianyang Li;Yingnan Han;Xiaolong Li
    • KSII Transactions on Internet and Information Systems (TIIS)
    • /
    • v.18 no.3
    • /
    • pp.551-569
    • /
    • 2024
  • With the rapid development of electric vehicles (EVs) industry, EV charging service becomes more and more important. Especially, in the case of suddenly drop of air temperature or open holidays that large-scale EVs seeking for charging devices (CDs) in a short time. In such scenario, inefficient EV charging scheduling algorithm might lead to a bad service quality, for example, long queueing times for EVs and unreasonable idling time for charging devices. To deal with this issue, this paper propose a Deep-Q-Network (DQN) based two-stage scheduling method for the large-scale EVs charging service. Fine-grained states with two delicate neural networks are proposed to optimize the sequencing of EVs and charging station (CS) arrangement. Two efficient algorithms are presented to obtain the optimal EVs charging scheduling scheme for large-scale EVs charging demand. Three case studies show the superiority of our proposal, in terms of a high service quality (minimized average queuing time of EVs and maximized charging performance at both EV and CS sides) and achieve greater scheduling efficiency. The code and data are available at THE CODE AND DATA.

Comparison of Intelligent Charging Algorithms for Electric Vehicles to Reduce Peak Load and Demand Variability in a Distribution Grid

  • Mets, Kevin;D'hulst, Reinhilde;Develder, Chris
    • Journal of Communications and Networks
    • /
    • v.14 no.6
    • /
    • pp.672-681
    • /
    • 2012
  • A potential breakthrough of the electrification of the vehicle fleet will incur a steep rise in the load on the electrical power grid. To avoid huge grid investments, coordinated charging of those vehicles is a must. In this paper, we assess algorithms to schedule charging of plug-in (hybrid) electric vehicles as to minimize the additional peak load they might cause. We first introduce two approaches, one based on a classical optimization approach using quadratic programming, and a second one, market based coordination, which is a multi-agent system that uses bidding on a virtual market to reach an equilibrium price that matches demand and supply. We benchmark these two methods against each other, as well as to a baseline scenario of uncontrolled charging. Our simulation results covering a residential area with 63 households show that controlled charging reduces peak load, load variability, and deviations from the nominal grid voltage.

Impact of Electric Vehicle Penetration-Based Charging Demand on Load Profile

  • Park, Woo-Jae;Song, Kyung-Bin;Park, Jung-Wook
    • Journal of Electrical Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.244-251
    • /
    • 2013
  • This paper presents a study the change of the load profile on the power system by the charging impact of electric vehicles (EVs) in 2020. The impact of charging EVs on the load demand is determined not only by the number of EVs in usage pattern, but also by the number of EVs being charged at once. The charging load is determined on an hourly basis using the number of the EVs based on different scenarios considering battery size, model, the use of vehicles, charging at home or work, and the method of charging, which is either fast or slow. Focusing on the impact of future load profile in Korea with EVs reaching up 10 and 20 percentage, increased power demand by EVs charging is analyzed. Also, this paper analyzes the impact of a time-of-use (TOU) tariff system on the charging of EVs in Korea. The results demonstrate how the penetration of EVs increases the load profile and decreases charging demand by TOU tariff system on the future power system.

Improvement of Battery Charging Efficiency of ESS for Wind Power Application Using DC-AC Hybrid Charging Pattern (직교류 합성 충전 패턴을 이용한 풍력 연계용 ESS의 배터리 충전 효율 향상)

  • Lee, Jong-Hak;Song, Seung-Ho
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.4
    • /
    • pp.330-335
    • /
    • 2017
  • Increased fossil fuel consumption causes global warming, environmental pollution, and abnormal climate change. Wind-generated power installation is proposed to solve this problem. Recently, the wind power plant construction case encourages the installation of the energy storage system (ESS) to improve the intermittency of wind power. The maximized ESS operation profits connected to wind power are not generated in the simplest operation pattern of charging at night and discharging at day. The battery charging efficiency improvement should be considered to get more profits. Thus, there is a possibility of increasing ESS operation profits by analyzing the battery AC and DC charging/discharging efficiency and the yearly average sealed maintenance free (SMP) in hours. In this paper, the battery impedance characteristic, AC and DC charging/discharging efficiency, and the yearly average SMP are analyzed. The operation scenario to improve the ESS battery charging efficiency connected to wind power is proposed and verified via simulation.

Development of the Gas Charging Simulator for Reaction Control System of KSLV-I (KSLV-I RCS 충전모사 시스템 개발)

  • Jeon, Sang-Woon;Jung, Seul;Kim, Ji-Hun
    • Aerospace Engineering and Technology
    • /
    • v.8 no.2
    • /
    • pp.122-126
    • /
    • 2009
  • KSLV(Korea Space Launch Vehicle)-I is designed as a launch vehicle to enter a 100 kg-class satellite to the LEO(Low-Earth Orbit). Attitude angles of the upper-stage, including roll, pitch and yaw are controlled by cold gas thruster system using nitrogen gas. To verify the flow rate of the gas charging system and to prepare a nitrogen gas charging scenario, the development of a gas charging simulator for RCS(Reaction Control System) is required. This paper describes the orifice design, development, and test of the gas charging simulator for RCS of KSLV-I.

  • PDF

Characteristics of Lithium-ion(Li-ion) Batteries according to Charging and Discharging by Scenario (시나리오별 충방전에 따른 리튬이온(Li-ion) 배터리 특성)

  • Yongho Yoon
    • The Journal of the Institute of Internet, Broadcasting and Communication
    • /
    • v.23 no.4
    • /
    • pp.171-176
    • /
    • 2023
  • In the modern society of the 21st century, portable electronic products using secondary batteries are continuously becoming lightweight and miniaturized. And along with this trend, we are active in the era of the Fourth Industrial Revolution, where we collect and share information in our daily lives using wearable electronic devices. Therefore, the role of secondary batteries that can be recharged while using small home appliances and digital devices is increasingly important. Along with this increase, secondary battery performance tests require various test methods such as characteristics, lifespan, failure diagnosis, and recycling. In addition, the construction of a battery test system to ensure the safety and proper functioning of the battery, along with guidelines and correct basic knowledge are being considered. Therefore, in this paper, we will examine the characteristics of the secondary battery Li-ion battery according to the charging and discharging scenarios directly connected to the performance of the battery.

Optimal Supply Calculation of Electric Vehicle Slow Chargers Considering Charging Demand Based on Driving Distance (주행거리 기반 충전 수요를 고려한 전기자동차 완속 충전기 최적 공급량 산출)

  • Gimin Roh;Sujae Kim;Sangho Choo
    • The Journal of The Korea Institute of Intelligent Transport Systems
    • /
    • v.23 no.2
    • /
    • pp.142-156
    • /
    • 2024
  • The transition to electric vehicles is a crucial step toward achieving carbon neutrality in the transportation sector. Adequate charging infrastructure at residential locations is essential. In South Korea, the predominant form of housing is multifamily dwellings, necessitating the provision of public charging stations for numerous residents. Although the government mandates the availability of charging facilities and designated parking areas for electric vehicles, it bases the supply of charging stations solely on the number of parking spaces. Slow chargers, mainly 3.5kW charging outlets and 7kW slow chargers, are commonly used. While the former is advantageous for installation and use, its slower charging speed necessitates the coexistence of both types of chargers. This study presents an optimization model that allocates chargers capable of meeting charging demands based on daily driving distances. Furthermore, using the metaheuristic algorithm Tabu Search, this model satisfies the optimization requirements and minimizes the costs associated with charger supply and usage. To conduct a case study, data from personal travel surveys were used to estimate the driving distances, and a hypothetical charging scenario and environment were set up to determine the optimal supply of 22 units of 3.5kW charging outlets for the charging demands of 100 BEVs.

Decision-Making of Determining the Start Time of Charging / Discharging of Electrical Vehicle Based on Prospect Theory

  • Liu, Lian;Lyu, Xiang;Jiang, Chuanwen;Xie, Da
    • Journal of Electrical Engineering and Technology
    • /
    • v.9 no.3
    • /
    • pp.803-811
    • /
    • 2014
  • The moment when Electrical Vehicle (EV) starts charging or discharging is one of the most important parameters in estimating the impact of EV load on the grid. In this paper, a decision-making problem of determining the start time of charging and discharging during allowed period is proposed and studied under the uncertainty of real-time price. Prospect theory is utilized in the decision-making problem of this paper for it describes a kind of decision making behaviors under uncertainty. The case study uses the parameters of Springo SGM7001EV and adopts the historical realtime locational marginal pricing (LMP) data of PJM market for scenario reduction. Prospect values are calculated for every possible start time in the allowed charging or discharging period. By comparing the calculated prospect values, the optimal decisions are obtained accordingly and the results are compared with those based on Expected Utility Theory. Results show that with different initial State-of-Charge ($SoC_0$) and different reference points, the optimal start time of charging can be the one between 12 a.m. to 3 a.m. and optimal discharging starts at 2 p.m. or 3p.m. Moreover, the decision results of Prospect Theory may differ from that of the Expected Utility Theory with the reference points changing.