• Title/Summary/Keyword: Charging Module

Search Result 125, Processing Time 0.033 seconds

Rapid Electric Vehicle Charging System with Enhanced V2G Performance

  • Kang, Taewon;Kim, Changwoo;Suh, Yongsug;Park, Hyeoncheol;Kang, Byungik;Kim, Simon
    • Proceedings of the KIPE Conference
    • /
    • 2012.07a
    • /
    • pp.201-202
    • /
    • 2012
  • This paper presents a simple and cost-effective stand-alone rapid battery charging system of 30kW for electric vehicles. The proposed system mainly consists of active front-end rectifier of neutral point clamped 3-level type and non-isolated bi-directional dc-dc converter of multi-phase interleaved half-bridge topology. The charging system is designed to operate for both lithium-polymer and lithium-ion batteries. The complete charging sequence is made up of three sub-interval operating modes; pre-charging mode, constant-current mode, and constant-voltage mode. Each mode is operated according to battery states: voltage, current and State of Charging (SOC). The proposed system is able to reach the full-charge state within less than 16min for the battery capacity of 8kWh by supplying the charging current of 67A. The optimal discharging algorithm for Vehicle to the Grid (V2G) operation has been adopted to maintain the discharging current of 1C. Owing to the simple and compact power conversion scheme, the proposed solution has superior module-friendly mechanical structure which is absolutely required to realize flexible power expansion capability in a very high-current rapid charging system. Experiment waveforms confirm the proposed functionality of the charging system.

  • PDF

Design of Seawater Rechargeable Battery Package and BMS Module for Marine Equipment (해양기기 적용을 위한 해수이차전지 패키지 및 BMS 모듈 설계)

  • Kim, Hyeong-Jun;Lee, Kyung-Chang;Son, Ho-Jun;Park, Shin-Jun;Park, Cheol-Su
    • Journal of the Korean Society of Manufacturing Process Engineers
    • /
    • v.21 no.3
    • /
    • pp.49-55
    • /
    • 2022
  • The design of a battery package and a BMS module for applications using seawater rechargeable batteries, which are known as next-generation energy storage devices, is proposed herein. Seawater rechargeable batteries, which are currently in the initial stage of research, comprise primarily components such as anode and cathode materials. Their application is challenging owing to their low charge capacity and limited charge/discharge voltage and current. Therefore, we design a method for packaging multiple cells and a BMS module for the safe charging and discharging of seawater rechargeable batteries. In addition, a prototype seawater rechargeable battery package and BMS module are manufactured, and their performances are verified by evaluating the prevention of overcharge, overdischarge, overcurrent, and short circuit during charging and discharging.

A Design and Control of Rapid Electric Vehicle Charging System for Lithium-Ion Battery (전기자동차용 리튬이온 배터리 급속충전장치 설계와 제어)

  • Kang, Taewon;Suh, Yongsug;Park, Hyeoncheol;Kang, Byungik;Kim, Simon
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.26-36
    • /
    • 2013
  • This paper presents a simple and cost-effective stand-alone rapid battery charging system of 30kW for electric vehicles. The proposed system mainly consists of active front-end rectifier of neutral point clamped 3-level type and non-isolated bi-directional dc-dc converter of multi-phase interleaved half-bridge topology. The charging system is designed to operate for both lithium-polymer and lithium-ion batteries. The complete charging sequence is made up of three sub-interval operating modes; pre-charge mode, constant-current mode, and constant-voltage mode. The pre-charge mode employs the stair-case shaped current profile to accomplish shorter charging time while maintaining the reliable operation of the battery. The proposed system is specified to reach the full-charge state within less than 16min for the battery capacity of 8kWh by supplying the charging current of 78A. Owing to the simple and compact power conversion scheme, the proposed solution has superior module-friendly mechanical structure which is absolutely required to realize flexible power expansion capability in a very high-current rapid charging system.

PEBB Based Bi-directional Rapid Charging System for EV Traction Battery

  • Kang, Taewon;Chae, Beomseok;Suh, Yongsug
    • Proceedings of the KIPE Conference
    • /
    • 2013.07a
    • /
    • pp.323-324
    • /
    • 2013
  • This paper presents a simple and cost-effective stand-alone rapid battery charging system of 30kW for electric vehicles. The proposed system mainly consists of active front-end rectifier of neutral point clamped 3-level type and non-isolated bi-directional dc-dc converter of multi-phase interleaved half-bridge topology. The charging system is designed to operate for both lithium-polymer and lithium-ion batteries. The complete charging sequence is made up of three sub-interval operating modes; pre-charge mode, constant-current mode, and constant-voltage mode. The pre-charge mode employs the stair-case shaped current profile to accomplish shorter charging time while maintaining the reliable operation of the battery. The proposed system is specified to reach the full-charge state within less than 16min for the battery capacity of 8kWh by supplying the charging current of 78A. Owing to the simple and compact power conversion scheme, the proposed solution has superior module-friendly mechanical structure which is absolutely required to realize flexible power expansion capability in a very high-current rapid charging system.

  • PDF

Development of LPWA based Bus Entry Notification Systems for Smartphone Loss Prevention at Bus Stop Charging Stand (버스정류소 스마트폰 충전대에서 스마트폰의 분실 방지를 위한 LPWA 기반 버스 진입 알림 시스템 개발)

  • Jang, Won-Chang;Lee, Myung-Eui
    • Journal of Advanced Navigation Technology
    • /
    • v.21 no.6
    • /
    • pp.620-625
    • /
    • 2017
  • Recently, the solar module for charging internet devices is installed in crowded areas to offers services so that people can charge their smartphones or tablets. But this charging module can not be linked with the information related to a bus approach so people are subject to let their belongings such as smartphone, tablet pc at the bus stop while they are still charging it. This paper proposes a system to inform the smart phone when the bus is accessed by using the LPWA technology and BLE technology to resolve such under-failures. This experimental result showed that the power usage of LPWA based bus entry systems is an average of X, confirming that the long period usage of low-power can be possible for low power consumption in this results, enabling information on the bus to be transmitted to smart phones using Advertising mode of BLE.

Design and Application of Power Line Communication Module for V2G Conforming with International Standard for Electric Vehicle Charging Infrastructure (EV 충전인프라를 위한 국제표준에 부합하는 V2G용 전력선통신모듈 설계 및 응용)

  • Kim, Chul-Soo;Baek, Soo-Whang
    • The Journal of the Korea institute of electronic communication sciences
    • /
    • v.13 no.6
    • /
    • pp.1183-1190
    • /
    • 2018
  • The environmental regulations are being strengthened all over the world, and the introduction of electric vehicles are actively being considered to cope with them effectively. It is essential to establish a charging infrastructure, which is an essential element of electric vehicle distribution. In this paper, power line communication technology essential for smart charging infrastructure is studied. A control board capable of achieving a physical layer speed of 10Mbps and a TCP/IP layer of 4.5Mbps, which conforms to the ISO/IEC 15118 international standard, and a control board mounted on the board and compliant with international standards. We have developed a software solution to perform functions for linking. In addition, in order to be applied to the combo-type DC fast charger, the hardware was designed to meet the industrial environment standard and the V2G communication module was developed by integrating it with the software solution.

Development and Evaluation of Multi-string Power Balancing System for Solar Streetlight (태양광 가로등용 멀티스트링 파워 밸런싱 시스템의 개발 및 평가)

  • Yun, Jung-Hyun
    • Journal of the Korean Institute of Electrical and Electronic Material Engineers
    • /
    • v.25 no.12
    • /
    • pp.1021-1027
    • /
    • 2012
  • In this paper, multi-string power balancing system for streetlight was developed. Accordingly, the components of the system was developed, unit converters, MPPT control unit, a bank of Li-ion battery and controls the charging and discharging. Loss by improving the efficiency of the system through the parallel operation of the unit converter output will be reduced. And by improving the efficiency of the system through the unit converter parallel operation, output losses will be reduced. Charging and discharging efficiency of the device used in a typical solar streetlight is calculated based on the maximum power input. Because of the variation of the input power has a weakness. In this paper, flexible to changes in the input, and a system was developed to minimize the cost per watt. Measure the performance of the unit module from the system, the result was more than 91%. And the charging capacity 12 V/105 Ah, module power 180 W, respectively. Should expect to be able to improve performance through continuous monitoring in the future.

New Pre-charging Method for Modular Multi-level Converter Operated in Nearest Level Control Modulation (근사 계단 제어 변조로 동작하는 모듈형 멀티 레벨 컨버터를 위한 새로운 초기 충전 기법)

  • Kim, Kyo-Min;Kim, Jae-Hyuk;Kim, Do-Hyun;Han, Byung-Moon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.65 no.10
    • /
    • pp.1655-1663
    • /
    • 2016
  • Recently the researches on Modular Multi-level Converter (MMC) are being highlighted because high quality and efficient power transmission are key issues in the High Voltage Direct Current (HVDC) transmission system. This paper proposes an improved pre-charging method for the sub-module capacitors in MMC that operates in Nearest Level Control (NLC) modulation. The proposed method does not require additional circuits or Pulse Width Modulation (PWM) techniques. The feasibility of proposed method was verified through computer simulations for a scaled 3-phase 10kVA MMC with 12 sub-modules per each arm. Hardware experiments with a scaled prototype were performed in the lab to confirm the simulation results.

A Management System for LPG Gas Vessel (LPG 가스용기 관리 시스템에 관한 연구 (이동형 용기에 한함))

  • Bang, Yong-Ki;Kang, Kyung-Sik
    • Journal of the Korea Safety Management & Science
    • /
    • v.16 no.4
    • /
    • pp.175-183
    • /
    • 2014
  • This study examined the effective system, which manages LPG Gas Cylinder by inserting an electronic tag or module to store a production year, material specification, charging data, management data, and warehousing data. Therefore, the user can effectively monitor the checking date, reexamining the gas cylinder (or not), and manufacture and expiration date. Moreover, through this study, the user can simply monitor a production date, warehousing data, and charging frequency by connecting a mobile app and a gas cylinder in which has an electronic tag or module at any time.

New Pre-charging Method for Modular Multi-level Converter operated in Nearest Level Control Modulation (근사 계단 제어 변조로 동작하는 모듈형 멀티 레벨 컨버터를 위한 새로운 초기 충전 기법)

  • Kim, Kyo-Min;Han, Byung-Moon
    • Proceedings of the KIPE Conference
    • /
    • 2016.07a
    • /
    • pp.129-130
    • /
    • 2016
  • 본 논문에서는 근사 계단 제어 변조(Nearest Level Control Modulation)로 동작하는 모듈형 멀티레벨 컨버터(Modular Multi level Converter)에서 충전 회로나 반송파(Carrier)없이 초기 충전(Pre-charging)하는 새로운 방식을 제안하였다. 이의 성능을 검증하기 위해 PSCAD/EMTDC 소프트웨어를 통해 암(Arm)당 12개의 서브모듈(Sub-Module)로 구성된 3상 10kVA 모듈형 멀티레벨 컨버터를 구현 및 시뮬레이션을 수행하였다.

  • PDF