• Title/Summary/Keyword: Charging Algorithm

Search Result 176, Processing Time 0.034 seconds

A Single-Phase Current-Source Bidirectional Converter for V2G Applications

  • Han, Hua;Liu, Yonglu;Sun, Yao;Wang, Hui;Su, Mei
    • Journal of Power Electronics
    • /
    • v.14 no.3
    • /
    • pp.458-467
    • /
    • 2014
  • In this paper, a single-phase current-source bidirectional converter topology for V2G applications is proposed. The proposed converter consists of a single-phase current-source rectifier (SCSR) and an auxiliary switching network (ASN). It offers bidirectional power flow between the battery and the grid in the buck or boost mode and expands the output voltage range, so that it can be compatible with different voltage levels. The topology structure and operating principles of the proposed converter are analyzed in detail. An indirect control algorithm is used to realize the charging and discharging of the battery. Finally, the semiconductor losses and system efficiency are analyzed. Simulation and experimental results demonstrate the validity and effectiveness of the proposed topology.

Two-Stage Inductive Power Transfer Charger for Electric Vehicles (전기자동차 충전기용 2-Stage 자기유도 무선전력전송 시스템)

  • Kim, Min-Jung;Joo, Dong-Myoung;Ann, Sang-Joon;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.22 no.2
    • /
    • pp.134-139
    • /
    • 2017
  • In this study, an inductive power transfer (IPT) charger for electric vehicles is proposed to improve the entire system efficiency and power density by eliminating the DC-DC converter in the secondary side. In the proposed IPT charger, the DC-link voltage is adjusted according to the coupling coefficient through cascade buck-boost converter in the front-end side, and the bridgeless rectifier performs the charging of battery. The control algorithm for the proposed IPT system is theoretically explained, and the validity of the proposed system is verified by informative simulation.

Comparison of MPPT Control Method Characteristic for Stand-alone PV System (독립형 태양광 발전시스템의 MPPT 제어기법 특성비교)

  • Lee, Yong-Sik;Kim, Nam-In;Jeong, Sung-Won;Gim, Jae-Hyeon
    • The Transactions of The Korean Institute of Electrical Engineers
    • /
    • v.61 no.1
    • /
    • pp.75-79
    • /
    • 2012
  • Maximum power point tracking(MPPT) techniques are used in photovoltaic systems to maximize the PV array output power by tracking continuously the maximum power point which depends on panels temperature and on irradiance conditions. This paper proposes a variable step size MPPT algorithm which can improve the MPPT speed and accuracy. Depending on insolation and temperature, the MPPT controller gives optimized step size. The effectiveness of the proposed system is verified thorough PSIM simulation and experiments on a 50[W] prototype. The experimental results confirm that the PV power of the improved P&O method is higher than that of the traditional P&O method.

Dynamic Routing and Scheduling of Multiple AGV System (다중 무인운반차량 시스템에서의 동적 라우팅과 스케줄링)

  • 전동훈
    • Journal of the Korea Society for Simulation
    • /
    • v.8 no.3
    • /
    • pp.67-76
    • /
    • 1999
  • The study of the optimization of operating policy of AGV system, which is used in many factory automation environments has been proceeded by many researchers. The major operating policy of AGV system consists of routing and scheduling policy. AGV routing is composed with collision avoidance and minimal cost path find algorithm. To allocate jobs to the AGV system, AGV scheduling has to include AGV selection rules, parking rules, and recharging rules. Also in these rules, the key time parameters such as processing time of the device, loading/unloading time and charging time should be considered. In this research, we compare and analyze several operating policies of multiple loop-multiple AGV system by making a computer model and simulating it to present an appropriate operating policy.

  • PDF

Fast Charging Current Estimation Algorithm Considering Battery Temperature (배터리 온도를 고려한 급속 충전 전류 추정 알고리즘)

  • Kang, Sung hyun;Kim, Dong hwan;Lee, Jae han;Noh, Tae-won;Lee, Byoung Kuk
    • Proceedings of the KIPE Conference
    • /
    • 2020.08a
    • /
    • pp.43-45
    • /
    • 2020
  • 본 논문에서는 급속 충전 시 배터리의 상한 온도를 초과하지 않는 최대 가용 충전 전류의 실시간 추정 알고리즘을 제안한다. 제안하는 알고리즘은 배터리 열 모델을 기반으로 상한 온도에 도달하는 발열량을 추정하고, 충전 상태에 따른 내부 저항의 변화 양성을 고려하여 최대 급속 충전 전류를 도출한다. 알고리즘의 유효성을 검증하기 위하여 전기자동차용 배터리 팩을 이용한 시뮬레이션 및 실험을 진행한다.

  • PDF

Combined Control Algorithm for a DC-DC Converter of PV & Battery for Mongolian Nomadic Life (유목민들을 위한 PV & Battery용 DC-DC 컨버터의 통합제어 알고리즘)

  • Tuvdensuren, Oyunjargal;Le, Tat-Thang;Park, Min-Won;Yu, In-Keun
    • Journal of Korea Society of Industrial Information Systems
    • /
    • v.23 no.1
    • /
    • pp.23-29
    • /
    • 2018
  • A stand-alone Photovoltaic (PV) system is one of the most important energy system for Mongolian nomadic herders. Basically, a stand-alone PV system uses two DC-DC converters. This makes the system costly, size bigger and difficult to move from one place to another place for the nomadic herders. A combined control algorithm for charging the battery using Stage of Charge (SOC) and Maximum Power Point Tracking (MPPT) is proposed in this paper. The batteries are charged by the three stage method; bulk, absorption and float charge. In the bulk stage used the MPPT function in this study. The performance of the proposed control algorithm is evaluated in both steady and changing weather conditions. The results are obtained using PSIM software. The results obtained in this paper are useful in designing a stand-alone PV system in the rural life like Mongolian nomadic herders.

Generation of Daily Load Curves for Performance Improvement of Power System Peak-Shaving (전력계통 Peak-Shaving 성능향상을 위한 1일 부하곡선 생성)

  • Son, Subin;Song, Hwachang
    • Journal of the Korean Institute of Intelligent Systems
    • /
    • v.24 no.2
    • /
    • pp.141-146
    • /
    • 2014
  • This paper suggests a way of generating one-day load curves for performance improvement of peak shaving in a power system. This Peak Shaving algorithm is a long-term scheduling algorithm of PMS (Power Management System) for BESS (Battery Energy Storage System). The main purpose of a PMS is to manage the input and output power from battery modules placed in a power system. Generally, when a Peak Shaving algorithm is used, a difference occurs between predict load curves and real load curves. This paper suggests a way of minimizing the difference by making predict load curves that consider weekly normalization and seasonal load characteristics for smooth energy charging and discharging.

Development of State of Charge and Life Cycle Evaluation Algorithm for Secondary Battery (이차전지의 상태 감시 및 수명 예측 알고리즘 개발)

  • Park, Jaebeom;Kim, Byeonggi;Song, Seokhwan;Rho, Daeseok
    • Journal of the Korea Academia-Industrial cooperation Society
    • /
    • v.14 no.1
    • /
    • pp.369-377
    • /
    • 2013
  • This paper deals with the state of charge(SOC) and life cycle evaluation algorithm for lead-acid battery, which is essential factor of the electric vehicle(EV) and the stabilization of renewable energy in the smart grid. In order to perform the effective operation of the lead-acid battery, SOC and life cycle evaluation algorithm is required. Specific gravity with the change of electrolyte temperature inside battery case should be obtained to evaluate the SOC of lead-acid battery, however it is difficult to measure the electrolyte temperature of sealed type lead-acid battery. To overcome this problem, this paper proposes the equation of thermal transmission to compensate internal temperature of the lead-acid battery. Also, it is difficult to exactly evaluate the life cycle of battery, depending on the operation conditions of lead-acid battery such as charging and discharging state, self discharging rate and environmental issue. In order to solve the problem, this paper presents the concept for gravity accumulation of charge and discharge cycle, which is the value converted at $20^{\circ}C$. By using the proposed algorithm, this paper propose the test device based on the Labview software. The simulation results show that it is a practical tool for the maintenance of lead-acid battery in the field of industry.

A PDPWM Based DC Capacitor Voltage Control Method for Modular Multilevel Converters

  • Du, Sixing;Liu, Jinjun;Liu, Teng
    • Journal of Power Electronics
    • /
    • v.15 no.3
    • /
    • pp.660-669
    • /
    • 2015
  • This paper presents a control scheme with a focus on the combination of phase disposition pulse width modulation (PDPWM) and DC capacitor voltage control for a chopper-cell based modular multilevel converter (MMC) for the purpose of eliminating the time-consuming voltage sorting algorithm and complex voltage balancing regulators. In this paper, the convergence of the DC capacitor voltages within one arm is realized by charging the minimum voltage module and discharging the maximum voltage module during each switching cycle with the assistances of MAX/MIN capacitor voltage detection and PDPWM signals exchanging. The process of voltage balancing control introduces no extra switching commutation, which is helpful in reducing power loss and improving system efficiency. Additionally, the proposed control scheme also possess the merit of a simple executing procedure in application. Simulation and experimental results indicates that the MMC circuit together with the proposed method functions very well in balancing the DC capacitor voltage and improving system efficiency even under transient states.

A Study on the Optimal Parameter Selection of a Power System Stabilizer and Power Converters for HVDC Linked System (HVDC 연계 시스템의 전력계통 안정화 장치와 전력변환기 적정 파라미터 선정에 관한 연구)

  • 조의상;김경철;최홍규
    • Proceedings of the Korean Institute of IIIuminating and Electrical Installation Engineers Conference
    • /
    • 2001.11a
    • /
    • pp.65-72
    • /
    • 2001
  • Power system stabilizer act efficiently to damp the electromechanical oscillations in interconnected power systems. This paper presents an algorithm for the optimal parameter selection of a power system stabilizer in two-area power systems with a series HVDC link. This method is one of the classical techniques by allocating properly pole-zero positions to fit as closely as desired the ideal phase lead between the voltage reference and the generator electrical power and by changing the gain to produce a necessary damping torque over the matched frequency range. Control of HVDC converter and inverter are used a constant current loop. Proper parameters of PI controllers are obtain based on the Root-locus technique in other to have sufficient speed and stability margin to cope with charging reference values and disturbance. The small signal stability arid transient stability studies using the PSS parameters obtained from this method show that a natural oscillation frequency of the studycase system is adequately damped. Also the simulation results using the HVDC converter and inverter parameters obtained from this proposed method show proper current control characteristics. The simulation used in the paper was performed by the Power System Toolbox software program based on MATLAB.

  • PDF