• Title/Summary/Keyword: Charger

Search Result 622, Processing Time 0.027 seconds

Development of 50kW High Efficiency Fast Charger with Wide Charging Voltage Range (넓은 충전전압 범위를 갖는 50kW급 고효율 급속충전기 개발)

  • Park, Jun-Sung;Kim, Min-Jae;Jeong, Heon-Soo;Kim, Joo-Ha;Choi, Se-Wan
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.21 no.3
    • /
    • pp.267-274
    • /
    • 2016
  • In this study, a fast charger for electric vehicle with wide charging voltage range is proposed. To achieve high efficiency, three-level topologies are employed for the AC-DC and DC-DC converters. Given that the output range of the DC-DC converter in fast chargers is quite wide, the circulating current of conventional three-level converter will increase under low voltage condition. The proposed hybrid switching method mitigates this issue. When a coupled inductor is used on the output side, the circulating current is further reduced, and the switches $S_2$, $S_3$, $S_6$, and $S_7$ achieve turning-off under the ZCS condition. Experimental results from a 50 kW prototype are provided to validate the proposed charger, and a rated efficiency of 95.9% is obtained.

Variable Charger of Vehicle using Relay (릴레이를 이용한 차량용 배터리의 가변 충전기)

  • Song, Sung-Geun;Chung, Seung-Tae;Kang, Sung-Gu;Lee, Sang-Hun
    • Journal of the Korean Institute of Illuminating and Electrical Installation Engineers
    • /
    • v.26 no.9
    • /
    • pp.47-56
    • /
    • 2012
  • This research is to develop satiable battery charger with a variety of capacity and voltage specifications of battery. For this, voltage or current were controlled through buck converter which is DC voltage that already received three-phase at primary side and passed bridge rectifier diode. And, it was comprised of full-bridge converter and HFTR for insulation and a square wave AC. The transformer primary side was comprised in series to divide certain charging current and the secondly side was comprised of 6 fixed transformers so that they can generate certain amount of power and various output voltage through relay parallel compound 6 DC Link outputs. To confirm such structure's verification and validity, simulation with PSIM was conducted, and validity of proposed variable charger system was verified through 3kW stack production.

Dead-Time for Zero-Voltage-Switching in Battery Chargers with the Phase-Shifted Full-Bridge Topology: Comprehensive Theoretical Analysis and Experimental Verification

  • Zhang, Taizhi;Fu, Junyu;Qian, Qinsong;Sun, Weifeng;Lu, Shengli
    • Journal of Power Electronics
    • /
    • v.16 no.2
    • /
    • pp.425-435
    • /
    • 2016
  • This paper presents a comprehensive theoretical analysis and an accurate calculation method of the dead-time required to achieve zero-voltage-switching (ZVS) in a battery charger with the phase-shifted full-bridge (PSFB) topology. Compared to previous studies, this is the first time that the effects of nonlinear output filter inductance, varied Miller Plateau length, and blocking capacitors have been considered. It has been found that the output filter inductance and the Miller Plateau have a significant influence on the dead-time for ZVS when the load current varies a lot in battery charger applications. In addition, the blocking capacitor, which is widely used to prevent saturation, reduces the circulating current and consequently affects the setting of the dead-time. In consideration of these effects, accurate analytical equations of the dead-time range for ZVS are deduced. Experimental results from a 1.5kW PSFB battery charger prototype shows that, with the proposed analysis, an optimal dead-time can be selected to meet the specific requirements of a system while achieving ZVS over wide load range.

Experiment of Single-phase Grid Connected Battery Charger (5kW급 계통연계형 단상 배터리 충전기의 구현 및 실험)

  • An, Hyun-Sung;Lee, Wujong;Mun, Byung-Ho;Park, Il-Kyu;Jung, Seon-Yong;Kim, Youngroc;Cha, Hanju
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.18 no.1
    • /
    • pp.84-90
    • /
    • 2013
  • This paper explains control methods of single-phase grid connected battery charger. Charging mode is control by Constant Current - Constant Voltage method and discharging mode is controlled by active-reactive power control method. Current control method is based on the synchronous reference frame(SRF) PI controller, and the second harmonic of battery current is compensated by an added L-C resonant circuit. Feasibility of the proposed control methods is verified through experiment with a prototype of 5kW single-phase grid connected battery charger.

Effect of Heat Treatment on the Mechanical Properties of Investment Casting Turbo Charger Wheel using A356 Alloy (A356합금을 이용한 정밀주조 Turbo Charger Wheel의 기계적 특성에 미치는 열처리의 영향)

  • Kim, Sang-Mi;Woo, Kee-Do;Kim, Ji-Young;Kim, Sang-Hyuk;Park, Sang-Hoon;Kang, Hwang-Jin;Park, Chan-Sung
    • Journal of Korea Foundry Society
    • /
    • v.31 no.5
    • /
    • pp.262-266
    • /
    • 2011
  • The aim of this study is to investigate aging behavior of A356 alloy for turbo charger part. The specimen was fabricated by investment casting. Solution heat treatment was performed at $525^{\circ}C$ for 8h and followed by aging treated at $160^{\circ}C$, $170^{\circ}C$ for 0.5~20h. And their microstructures and mechanical properties of the aged specimens were analyzed by scanning electron microscope and hardness tester, respectively. All the cast A356 alloy included eutectic Si particles. In the cast A356 alloy, eutectic Si phase mainly was formed along Chinese script phase. Vickers hardness of the cast was improved by aging treatment due to formation of ${\beta}$" phase and ${\beta}$' phase.

A Novel PCCM Voltage-Fed Single-Stage Power Factor Correction Full-Bridge Battery Charger

  • Zhang, Taizhi;Lu, Zhipeng;Qian, Qinsong;Sun, Weifeng;Lu, Shengli
    • Journal of Power Electronics
    • /
    • v.16 no.3
    • /
    • pp.872-882
    • /
    • 2016
  • A novel pseudo-continuous conduction mode (PCCM) voltage-fed single-stage power factor correction (PFC) full-bridge battery charger is proposed in this paper. By connecting a freewheeling transistor in parallel with an input inductor, the PFC cell can operate in the PCCM with a constant duty ratio. Thus, the dc/dc stage can be designed using this constant duty ratio and the restriction on the duty ratio of the PFC cell is eliminated. As a result, the input current distortion is less and the dc bus voltage becomes controllable over the wide output power range of the battery charger. Moreover, the operation principle of the dc/dc stage is designed to be similar to that of a conventional phase-shifted full-bridge converter. Therefore, it is easy to implement. In this paper, the operation of the new converter is explained, and the design considerations of the controller and key parameters are presented. Simulation and experimental results obtained from a 1 kW prototype are given to confirm the operation of the proposed converter.

Design of Optimal Resonant Frequency for Series-Loaded Resonant DC-DC Converter in EVs On-Board Battery Charger Application (전기자동차 탑재형 충전기용 부하직렬공진형 컨버터의 최적 공진주파수 설계)

  • Oh, Chang-Yeol;Kim, Jong-Soo;Lee, Byoung-Kuk
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.17 no.1
    • /
    • pp.77-84
    • /
    • 2012
  • This paper describes the process of optimal resonant frequency design with full-bridge series-loaded resonant dc-dc converter in a high efficiency 3.3 kW on-board battery charger application for Electric Vehicles and Plug-in Hybrid Electric Vehicles. The optimal range of resonant frequency and switching frequency used for ZVS are determined by considering trade-off between loss of switching devices and resonant network with size of passive/magnetic devices. In addition, it is defined charging region of battery, the load of on-board charger, as the area of load by deliberating the characteristic of resonant. It is verified the designed frequency band by reflecting the defined area on resonant frequency.

A High Efficiency LLC Resonant Converter-based Li-ion Battery Charger with Adaptive Turn Ratio Variable Scheme

  • Choi, Yeong-Jun;Han, Hyeong-Gu;Choi, See-Young;Kim, Sang-Il;Kim, Rae-Young
    • Journal of Electrical Engineering and Technology
    • /
    • v.13 no.1
    • /
    • pp.124-132
    • /
    • 2018
  • This paper proposes an LLC resonant converter based battery charger which utilizes an adaptive turn ratio scheme to achieve a wide output voltage range and high efficiency. The high frequency transformer of the LLC converter of the proposed strategy has an adaptively changed turn ratio through the auxiliary control circuit. As a result, an optimized converter design with high magnetizing inductance is possible, while minimizing conduction and turn-off losses and providing a regulated voltage gain to properly charge the lithium ion battery. For a step-by-step explanation, operational principle and optimal design considerations of the proposed converter are illustrated in detail. Finally, the effectiveness of the proposed strategy is verified through various experimental results and efficiency analysis based on prototype 300W Li-ion battery charger and battery pack.

Comparison of Battery Charging Strategies for PHEVs using Propulsion Motor Inductance and Multi-Function Inverter (인덕터 및 모터 인덕턴스를 이용한 PHEV 배터리 충전 기법 비교 분석)

  • Woo, Dong-Gyun;Choe, Gyu-Yeong;Kim, Jong-Soo;Lee, Byoung-Kuk;Kang, Gu-Bae
    • The Transactions of the Korean Institute of Power Electronics
    • /
    • v.16 no.4
    • /
    • pp.326-333
    • /
    • 2011
  • This paper studies battery charging methods using existing motor inductance and 3-phase inverters without an additional charger to charge the battery of Plug-in Hybrid Electric Vehicles (PHEVs). As inverter switch control and motor coil used as the energy storage device for boosting make the system the boost converter, the additional charger is eliminated and volume, weight, and cost for the charger are reduced. Various charging methods according to topologies of the system and configurations of the controller are analyzed and verified by PSIM simulation.

Analysis of the Charging Characteristics of High Voltage Capacitor Chargers Considering the Transformer Stray Capacitance

  • Lee, Byungha;Cha, Hanju
    • Journal of Power Electronics
    • /
    • v.13 no.3
    • /
    • pp.329-338
    • /
    • 2013
  • In this paper, the charging characteristics of series resonant type high voltage capacitor chargers considering the transformer stray capacitance have been studied. The principles of operation for the four operational modes and the mode changes for the four different switching frequency sections are explained and analyzed in the range of switching frequency below the resonant frequency. It is confirmed that the average charging currents derived from the above analysis results have non-linear characteristics in each of the four modes. The resonant current, resonant voltage, charging current, and charging time of this capacitor charger as variations of the switching frequency, series parallel capacitance ratio ($k=C_p/C_s$), and output voltage are calculated. From the calculation results, the advantages and disadvantages arising from the parallel connection of this stray capacitance are described. Some methods to minimize charging time of this capacitor charger are suggested. In addition, the results of a comparative test using two transformers whose stray capacitances are different are described. A 1.8 kJ/s prototype capacitor charger is assembled with a TI28335 DSP controller and a 40 kJ, 7 kV capacitor. The analysis results are verified by the experiment.